This microfiche was
produced according to
ANS!/ AlIM Standards

and meets the
quality specifications

contained therein. A
poor blowback image

IS the result of the
characteristics of the

original document.

SOFTWARE ENGINEERING LABORATORY SERIES SEL-94-002

SOFTWARE MEASUREMENT
GUIDEBOOK

JULY 1994

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

Foreword

The Software Engineering Laboratery (SEL) is an organization sponsored by the National
Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) and created
to investigate the effectiveness of software engineering technologies when applied to the
development of applications software. The SEL was created in 1976 and has three primary
organizational members:

NASA/GSFC, Software Engineering Branch
University of Maryland, Department of Computer Science
Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the GSFC
environment; (2) to measure the effects of various methodologies. tools, and models on this
process: and (3) to identify and then ¢ > apply successful development practices. The activities,
findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory
Series. a continuing series of rcports wat includes this document.

This Software Measurement Guidebook has also becn released as NASA-GB-001-94, a product
of the Software Engineering Program established by the Office of Safety and Mission Assurance
(Code Q) at NASA Headquarters.

The following are primary contributors to this document:
Mitcheli J. Bassman, Computer Sciences Corporation
Frank McGarry, Goddard Space Flight Center
Rose Pajerski, Goddard Space Flight Center

Single copies of this docnment can be obtained by writing to

Software Engineering Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771

it SEL-94-002
creCRliing. PAGE BLANK DIOT FILEED

:‘ PACE LA T ‘sl Y Blann

Abstract

This Sofnvare Measurement Guidebook presents information on the purpose and importance of
measurement. It discusses the specific procedures and activities of a measurement program and
the roles of the people involved. The guidebook also clarifie. the role that measurement can and
must play in the goal of continual, sustained improvement for all software production and
maintenance efforts.

\ SEL-94-002

riaeledieG. PAGE BLANK NOT FiLME: -

Contents

FOTEWOI......oovieeeeeeeie ettt et et a et e se s e e bbb eeas e e sas e e s e e rae e s eeen bt enesseaenessteanns it
ADSITACE.c....eeeiiceeteerr e et e e e e ee e et e e e eee s s aae s e eesaaee s e es s s b e e e e e s st e e bbbt e st s e eres s R aa e b br e e e v
Chapter 1. INTOQUCHION. c.cc.cvviiiiie ittt et e s e st re e s ee et seesataesmans 1
1.1 Background........ooeeeiviiiiiiiiicce e e 1

1.2 PUIPOSE ettt st st st et e b a e ae s san e 2

1.3 OFaniZaliOn.......ccccveiiiiiiiriiiieinceree et ee ettt st se s sh e san st mesn e s sbesanessaaen 2
Chapter 2. The Role of Measurement in Software Engineering..........c.cocooeeiiiiiiiniicncccincnn. 5
2.1 Measurement To Increase Understandingcccceeermiiiiniiiineeinnnecitecetereeeveseeeeanee 6

2.2 Measurement for Managing SOftWarec.cccvmmminiiiinienicincre e, 12
22.1 Planning and ESHMAtINGccccccoriiiiiiiniinitecneneee s eeenceeare s eereeesecesteeneeeaes 13

222 TIACKINE c ettt r s st e see e st e n s e na e e e e saass casesaraeneenrtan 15

223 Validatingco.oiiiiiiiieiieeeee ettt ettt 16

2.3 Measurement for Guiding Improvementccccoiioiiiiiiiiniiiiiintireeinee et 16
23,1 Understandingooceoeeiiiiiiiniinmiciiicst e 18

2.3.2 ASSESSIME ueereennintreeieiraieraesease et s e et e eassatae s st ta e e rbre st e e s be e a et et e e e e e s et e et e eeabas 19

2.3.3 PaCKaINg ..uceeieiiiiiiiee et ettt see s s neneeas 20

Chapter 3. Establishing a Measurement Program.............cccooviiiiiinninciciceceeccecene 21
3.1 GORIS ettt et sttt et e e ek st e et e e e esaa s e bt e e aa e et e nnneenen 22

32 S0P ettt ettt a e e s e e e e e e s euaassse e s s n e e e e e eeas 23

3.3 Roles, Responsibilities, and Struchireccccciviiiinnin st 24
3.3.1 The Source of Data.........cccieiiieeeiiiriiieireseeeiee et ereee e rere et ve e 25

3.3.2 Analysis and Packaging........cccccoe coiiiiiiiiiiiii e 26

3.3.3 Technical Support.........ccceeeeen. e et e re e 26

3.4 Seleciing the MEASUTEScoiiiiiiiiieiiiiiienirreeee e itreseeseere e s seese s aeesaesnee s saesssbeeas 28

3.5 Cost Of MEASUTEMENLooueiiiiieiieieetenirres aeerereitene et etesate s e s eesbesse st s eaaesaeeas 30
3.5.1 Cost to Development and Maintenance COMPONENtcccuevveenviinimnuccnnnnne. 32

3.5.2 Cost of Data ProCesSIng......ccocceeeeiiiimiiiiiiiiiieiirreenteenieeenrecceneeeree e s seneeessnaas 32

3.5.3 Cost of Analysis and Packagingcccooccceeeriveeennrinminiiie it 33

Chapter 4. Core MEASUTES....c....uveiriuiiiiiiieiiereeetieteaees e s e e s s e sse s s see st e e erasesesbe s sesnseesnaas 35
O S T O OSSOSO PO VU UV OUOROO VOSSO 36
4.1.1 DeSCrIPHON ..ottt e 37

4.1.2 Data DefIMItOnooviiiren ittt e 37

.2 EITOTS.ciiitieeeteieirtercereiee e eeteteat e e e e e s aste e s e e e st ab e e e s sannan e s nree s semnessessuneese s maneesenanas 39
421 DESCIIPONiiiieiiceiieeeeiceettte reerseseeesesireeesaieestte e s rea s bssssbee s beeesabeeans 39

4.2.2 Data Definitioncccciiiiiiiiiiiieeiiiirini ettt 40

4.3 Process CharaCteriSHCSoovrruuriiieeriieeenriiiceiee ettt cenrs s rame st sssetee e e sneeenenns 4]

vii SEL-94-002

FaECEOSHA PAGE BLANK KOT ERMED rop W\ .o

4.3.1 DESCIIPHON ...oonmiiiiicitectetciticeerirtees cevteree e et a et s e st e st e e b e e s s abenn s 41

4.3.2 Data Defimitionccociiciuiinieieiee ettt enne e 42

4.4 Project DYNAMICSccocerirrienee ittt eiiniees ceiaeeesiissconnesaeereesan e e e nnessnessssnnns 43
4.4.1 DESCIIPUON c..oeiiicieecirectre et et s et c s st e e s b s e e e s renaasnans 43

4.4.2 Data Definitionc.cc..eeiiniiiiiieeeeteetret et s e et 43

4.5 Project CharaCteriStiCSc..ueeiirrriierieeeereeseeinsciiee s iaee e aessas st re s seessaresense s ssesesranesns 4
4.5.1 DESCIIPHON ...courruirnneeeertiteerte st eses e st et e e sbs e s s s s sessnesaesase e e srnesasesreseennsasenasas 45

4.5.2 Data Definitioncccccciiiiiiieeiiie ettt e 46

Chapter 5. Operation of a Measurement Program............c.cocoooiiiiimnninnncninennnccrenneeee, 51
5.1 Development and Maintenancec.ccevvuviiiciiniiiiiiinniiccnicncece e csenseesanes 93
S5.1.1 Providing Data.... ..o 53

5.1.2 Participating in StUAI€scccceervrvimriieneiniiiiniiiiiese st 54

5.2 Technical SUPPOTLcoccuiiuiiiiiieeii ittt et s e st e eresae e s s e 54
5.2.1 Collecting Data............cccuieimimimiiiiiiieieieeiiee ettt eeeereece s e e e e aas e 54

5.2.2 Storing and Quality Assuring Datac.cccocceveiiiiiiininccninieccece e, 56

5.2.3 Summarizing, Reporting, and Exporting Datacccocoviiiiinniniinnnns 57

5.3 Analysis and Packagingccccouiiiiiiiiiiiii et 58
5.3.1 Designing Process Improvement Studies............cccoovvevneiiiivninniiinniciennecnnne. 59

5.3.2 Analyzing Project Datacccccooviiiiiiiiinniiiiiicccer e 60

5.3.3 Packaging the Results...........ccccooorimiiiiniiniiiiiecccccreceee e 61

Chapter 6. Analysis, Application, and Feedbackcccccoiiiiniiiniiciiicieciereeeccrte e 69
6.1 UnderstandiBgcooomiiiiiieiiiice e 70
6.1.1 Software AtrIDULES.........ooiieeirieiiiiiteiiciere ettt eae e 71

6.1.2 COSt ChAraCLETISHCS ..v.veeevanreenieeatessieeieneeeteesueeeeeatereeeeesasasacessessunessnassssosnsnns 75

6.1.3 Error CharaCteriStiCScooviimmmeniririiisnisiee e ccre i see e e en s ae s st e &0

6.1.4 Project DYRAMICScccooviiiiiiiiiicioreeccetes st sns e e aneeser s 84

6.2 MANAZING ..coveiiiiiiriee et e s s st 85
6.2.1 Planning.....coooiiiiii et e 86

6.2.2 ASSESSING PTOZIESS... .ottt 89

6.2.3 Evaluating ProCESSES......cc.iiiueiiiieiiiiiente e erenee s etn s snne s s 95

6.3 Guiding IMPrOVEMENL........cooiuiiiiiiiiiieci ittt sab s sa e ne e 96
Chapter 7. Experience-Based GUIdElINESccccccovmiiiiiiiiiiiiiiciniie sttt 103
Appendix A. Sample Data Collection FOImMScccoiiieeiiiiiiiiiiiiiiieceeec e, 109
Appendix B. Sample Process Study Plan............ccccoociniiiioinniiiinticcnrecrcccne e 127
Appendix C. List Of RUlES......cooiiiiiiiiiii e 129
Abbreviations and ACTOMYINSooovvrvircetiniaeiiieeeerts et eeteeeseae et e setesste s s eese e et e e s smeeesneens 131
REfETENCES ... bttt ce s e e e nae s s e sannes 133
Standard Bibliography of SEL LIEraturecccocviviiiiiniiciniccieicniccecne e 135

SEL-94-002 viii

Figures

2-1
2-2
2-3
2-4
2-5
2-6
2-7

5-4
5-5
5-6
5-7
5-8
6-1
6-2
6-3
6-4
6-5
6-6

Motivation for Understanding the Software Engineering Process...........c..ccooeciviicnne. 7
Effort Distribution by ACHVILYcocoiiiiiiiiiiiiiiiiene et se s 9
Error Class Distribution............cocoiiiiiiiiicc et 10
Growth Rate of Source Codettt il
Change Rate of SoUrce Code.......cooocoiiiiriiiiiiiicieeee et e e e e 12
Sample Process Relationshipscocoiiiiiiiiiiiiiiiiiiccccecce e 13
Tracking Growth RAle........c.coceiiiiiiiiiiceiienttese e et esensne s 15
The Five Maturity Levels of the CMM ...t 17
The Understand/Assess/Package Paradigmcooooiviiiiiiiiiiiiiiciiceeeeee 18
The Three Components of a Measurement Programccccooviiiiiienininniinnnneeeeennnne 25
The SEL as a Sample Structure for Process Improvementcccoooiiiiiniiiiinnnnn, 28
Cost of Software MeasuIEmMIEN!Toeverereiieitieiieieres et ee et e e e ae 31
Cost Data Collection SUMMATY........ccootiiiiriiereeteit ittt e e e e 39
Error Data Collection SUmmarycccocoeiiiiiiiiionii et ree e 41
Process Characteristics Data Collection SUMMATYooovviriiiiiiiciiieeeceee e 43
Project Dynamics Collection SUMMATYccoooieeiiriiriimiiiiieneee e 44
Project Characteristics Collection SUmMmMAry............cccovvviiiiieiriieriitenie e 49
Three Data Collection MechaniSmscccooieiiiiiiiiiiciiaire et 52
Project Summary STAtISTCS «...ocveirerrieeeieeie ettt sree et e ne e e 58
Process Study Plan Qutline.........ccocovviiiiiiiieieeee ettt s 60
High-Level Development Project Summary Report.... ..o 62
High-Level Maintenance Project Summary Reportccooeiiiiiiiiiiinie e, 63
Impact of Ada on Effort Distributioncc.ccoeeeiiiniiniiccieece 64
Sample Error Rate Model........ccooovmiiiiiii ettt 65
SME Architecture and USe.........c.cccveiivmiiieiiiiniieintee et eitaeiae e 67
Language Usage Trend.........coccooiiiiiiiiiiiiiiiiiiece ettt 73
Code Reuse Trend.......coc.ooiiiiiiiiiiiec et 74
Derivation of 20 Percent Reuse Cost Factor for FORTRANcccooviiiniieniiiiinnnee 76
Derivation of 30 Percent Reuse Cost Factor for Adaccoccoeeiiinninnnniniiiiene, 77
Effort Distribution Model. ...t 78
Staffing Profile Modeloooeiriiiiiiiiiei e 78

ix SEL-94-002

6-8

6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24

A-10
A-11
A-12
A-13

Typical Allocation of Software Project RESOUICescooiniiiiiiiinneniiien 81

Error Detection Rate by Phasecocooiviiiiiiminictee st 82
Comparative Error-Class Distributionscccoeveniiniiniiiinins 83
Cyclomatic Complexity and SLOC as Indicators of Errors (Preliminary Analysis).......... 84
Growth Rate MOdeloc.ooiiiieieciicier sttt sttt 85
Planning Project DyNAMICSccccrieiminininsssnennnenc sttt bbb 89
Growth Rate Deviationcccceeiierieiceicnninniiiiiiintenneesenesrennsesssassssesssstnasssesnasasse 91
Change Rate Deviation ..ottt 91
Staff Effort DEVIAtONcc.vveeeeiireceeeeeenereestsintierinies s e s rre st s e sar s e s ese s ssanananesenasenes 92
Tracking DISCTEPANCIESccccevuireeimieiiiiiinnirasseanasrearess st et st ene e es st s s s st s s tas 93
Projecting Software QUality..........ccooeerimiiieeeiiieeieen e 94
Impact of the Cleanroom Method on Software Growthc.ccoeceeeiiniiiiniiininninnn. 95
Impact of the Cleanroom Method on Effort Distribution......c.c.coeeevveevicieinnnniinnninn 98
Impact of IV&V on Requirements and Design EITOrs...........cooiiininnniniiinnninnn 100
Percentage of Errors Found After Starting Acceptance Testingccocooevenincennnnnne 101
IV&YV Error Rates by Phasecooeviiiiiiiiinieeier ettt 101
Impact of IV&V on Effort DistribUtioncoeeeeeeviiennieninriieccinecins 102
Impact of IV&YV 0N COSL.......couiiiiiireereiieienis ettt 102
Exaniples of Measures Collected Manuallycoviiimoniniiii 108
Change Report FOIMN ..o 110
Component Origination FOMM.........ooommiiiiiii 112
Development Status FOMMc..co.oiimiiiiii e 113
Maintenance Change Report FOIMc.oviiioimieniiiiicciie e 114
Personnel ReSoUrces FOIMNcoooivviieiiienieicniec ettt 115
Personnel Resources Form (Cleanroom Version)..........ooueeerieiiimiiiiiceeeninseninenseenenee 116
Project Completion Statistics FOIMcouvimiinieirriiieicicccicc e 117
Project EStimates FOIM ..ottt 118
Project Startup FOIM......c.cooouiiiiiiiiietce e 119
Services/Products FOIMN........c...oiieiveciiieiieecccec e rrsare s e sas st e e s sss e assessneeas 120
Subjective Evaluation FOMM.......c..ccooviiiiiii e 121
Subsystem Information FOrm..........cooeviiriiiiiiinic i 124
Weekly Maintenance Effort FOrm........ccooviinininiiinncns e 125

SEL-94-002 X

Tables

2-1
2-2
23
4-1
4-2

4-4
4-5
6-1
6-2
6-3
6-4

6-6
6-7
6-8
6-9
7-1
A-1

Sample Software CharacteriStiCs.........covvviiuiiiiriiereier ettt 8
Distribution of Time Schedule and Effort Over Phases.............cooeiiinnnnin 14
Impact of the Cleanroom Method on Reliability and Productivity.........cccccenvinienes ceeninn 19
Data Provided Directly by Project Personnelcoviiomiieiiniiiniecces 38
Change Datac.cocceeiivriiiiiiiiite bt et e 40
Process Characteristics Data..........co.ouioiiciiiieiiiicinincinesic e 42
Project Dynamics Data...........c.ooiiiiiimmiciiiiniiei et e 44
Project Characteristics Datacoooieiiiiiiiciniene et 47
Questions Leading to Understandingcooeveeiimmniiiiinimieceteeieeienecneee e 71
Software Aribute Data.......ccoooieeeeieiiiinee et 72
Analysis of Maintenance Effort Datac.cccoceevnininine e, 80
Basis of Maintenance Costs ESMAtesccccoeveriiiiiiiiniiniiicieeiee st 80
Questions Supporting Management ACHVIHES........covveemeriritieisinieene et 86
Project Planning ESHMALESccooiiieimmnuiiiriiccieieinn et 88
Indicatcrs of Change Attributable to Cleanroom............cooiiinininiiniiciien 97
Impact of the Cleanroom Method on Reliability and Productivity.........cccccooeeeiicnes . 99
Indicators of Change Attributable to IV&V ..o, 100
Examples of Automated Measurement Support TOOISooieiiininceninincnea, 107
SEL Data Collection FOImS.ccovviieeereeeerirreciniii s necssnnee s es s e e e 109

Xi SEL-94-002

Chapter 1. Introduction

1.1 Background

his Software Measurement Guidebook is based on the extensive experience of several

organizations that have each developed and applied significant measurement! programs

over a period of at least 10 years. One of these organizations, the Software Engineering
Laboratory (SEL) at the National Aeronautics and Space Administration (NASA) Goddard Space
Flight Center (GSFC), has been studying and applying various techniques for measuring software
since 1976. During that period, the SEL has collected measurement data from more than 100
flight dynamics projects ranging in size from 10,000 to over 1,000,000 source lines of code
(SLOC). These measurement activities have generated over 200,000 data collection forms, are
reflected in an online database, and have resulted in more than 200 reports and papers. Mcre
significantly, they have been used to generate software engineering models and relationships that
have been the basis for the software engineering policies, standards, and procedures used in the
development of flight dynamics software.

Many other organizations in both Government and industry have documented their significant
measurement experiences. (See, for example, References 1 through 7.) The lessons derived from
those experiences reflect not only successes but also failures. By applying those lessons, an
organization can minimize, or at least reduce, the time, effort, and frustration of introducing a
software measurement program.

The Software Measurement Guidebook is aimed at helping organizations to begin or improve a
measurement program. It does not provide guidance for the extensive application of specific
measures (such as how to estimate software cost or analyze software complexity) other than by
providing examples to clarify points. It does contain advice for establishing and using an effective
software measurement program and for understanding some of the key lessons that other
organizaticns have learned. Some of that advice will appear counterintuitive, but it is all baserd on
actual experience.

Although all of the information presented in this guidebook is derived from specific experiences of
mature measurement programs, the reader must keep in mind that the characteristics of every
organization are unique. Some degree of measurement is critical for all software development and
maintenance organizations, and most of the key rules captured in this report will be generally
applicable. Nevertheless, each organization must strive to understand its own environment so that
the measurement program can be tailored to suit its characteristics and needs.

Historically, many software organizations have established development and maintenance
processes and standards in an ad hoc manner, on the basis of guidance from outside the
organization, or from senior personnel called upon to establish company standards. Often, this
approach has led to incompatibilities, unconvinced development groups, and, occasionally,
complete confusion. Too often, organizations attempt to generate policies or standards and to

1 Some organizations use the terms metrics and measurement interchangeably.

1 SEL-94-002

adopt particular technologies without first understanding the existing processes and environment.
This lack of understanding can make a bad situation worse. Before establishing policies and
defining standards, an organization must clearly understand the environment and the existing
processes. A commitment to understand and improve local software processes requires the
establishment of a software measurement program, which is the precursor to continual process
improvement.

The following rul: is the single most important one regarding software measurement:

Understand that software measurement is a means to an end,
not an end in itself.

A measurement program without a clear purpose will result in frustration, waste, annoyance, and
confusion. To be successful, a measurement program must be viewed as one tool in the quest for
the improved engineering of software.

1.2 Purpose

The purpose of this Software Measurement Guidebook is threefold. First, it presents information
on the purpose and importance of measurement—information that has grown out of successful
measurement applications.

Second, the guidebook presents the specific procedures and activities of a measurement program
and the roles of the people involved. This guidebook discusses the basic set of measures that
constitutes the core of most successful measurement programs. It also provides -ome guidance
for tailoring measurement activities as a program matures and an organization captures its own
experiences.

Finally, the guidebook clarifies the role that measurement can and must play in the goal of
continual, sustained improvement for all software production and maintenance efforts throughout
NASA. As NASA matures in its understanding a1d application of software, it is attempting to
apply the most appropriate software technologies and methodologies available. Like any other
software organization, NASA must build a firm foundation for software standards, policies, and
procedures. A carefully established measurement program can provide the rationale for
management decision making, leading to achievement of the goal of sustained improvement.

1.3 Organization

This “Introduction” is followed by six additional chapters and three appendices.

Chapter 2, “The Role of Measurement in Software Engineering,” lays the groundwork for
establishing a measurement program. The chapter explains why any software group should have a
well-defined measurement program and provides examples of supporting data that can be valuable
in justifying the costs involved in implementing such a program.

Chapter 3, “Escablishing a Measurement Program,” describes the essential steps for starting a
measurement program. The chapter includes organization, key measurement data, classes and

SEL-94-002 2

sources of data, general cost information, and, most important, goal setting and application of the
measurement program.

Chapter 4, “Core Measures,” introduces the recommended core set of measures that can benefit
any software organization.

Chapter 5, “Operation of a Measurement Program,” discusses major organizational issues, data
collection and storage, quality assurance (QA) of the data, feedback of data, and cost of
operations.

Chapter 6, “Analysis, Application, and Feedback,” presents information on the analysis of
measurement data and the application and feedback of information derived from a measurement
program.

Chapter 7, “Experience-Based Guidelines,” offers some precautions for software organizations
that plan to include software measurement among their development and maintenance processes.

Appendices A, B, and C provide sample data collection forms, a sample process study plan, and a
list of rules, respectively.

3 SEL-94-002

Chapter 2. The Role of Measurement in Software

Engineering
I— Chapter Highlights
(1L LEv Reasans cor SoFtware MEasupemenT |

1. Understanding Software
« Baseline models and relationships
» Xey process characteristics
o Four measurement exampies

¢ Planning and «.stimating
e Tracking actuals versus estimates
» Validating models

? 2. Managing Software Projects

. Guiding Process Improvement
= Understanding
o Assessing
¢ Pac’-aging

eace 4 INTENTIONALLY BLnK 5 SEL-94-002

rreGRliE-BRAE SLANK KOT FeD

software development and maintenance activities and provides sound motivation for any

organization to initiate or expand its analysis of data and application of results. The
chapter explains the three key reasons for an organization to measure its software engineering
processes and product, providing actual examples from software organizations wiin mature
measurement programs.

T his chapter clarifies the role that a software measurement program can play in support of

A software organization may want to establish a software measurement program for many
reasons. Those range from having good management information for guiding software
development to carrying out research toward the development of some innovative advanced
technique. However, more than 17 years of experience with software measurement activities
within NASA have shown that the three key reasons for software measurement are to

1. Understand and model software engineering processes and products
2. Aid in the management of software projects
3. Guide improvements in software engineering processes

Any one of these reasons should be enough to motivate an organization to implement a
measurement program. The underlying purpose of any such program, however, must be to
achieve specific results from the use and application of the measures; collecting data is not the
objective. Most failed measurement programs suffer from inadequate or unclear use of data, not
from an inadequate or unclear data collection process. The rule in Chapter 1 implies that the
measurement program must be defined in a way that satisfies specific objectives. Without such
objectives, no benefit will be derived from the measurement effort.

2.1 Measurement To Increase Understanding

The most important reason for establishing a measurement program is to evolve toward an
understanding of software and the software engineering processes in order to derive models of
those processes and examine ::lationships among the process parameters. Knowing what an
organization does and how it operates is a fundamental requirement for any attempt to plan,
manage, or improve. Measurement provides the only mechanism available for quantifying a set of
characteristics about a specific environment or for se: wvare in general.

Increased understanding leads to better management of software projects and improvements in the
software engineering process. A software organization’s objective may be to understand the
status of the software engineering process or the implications of introducing a change. General
questions to be addressed might include the following:

¢ How much are we spending on software development?

¢ Where do wc allocate and use resources throughout the life cycle?
¢ How much effort do we expend specif:cally on testing software?

¢ What types of errors and changes are typical on our projects?

Figure 2-1 illustrates some more specific questions that may be of immediate concern to a
software manager.

SEL-94-002 6

: Can Ada 4 How long wili it take
{ heip improve reliabiity? L me 1o finish testing this |
Wil CASE tools improve ?
ity’?
% reliabil productivity
L & function of testing |
time?

Figure 2-1. Motivation for Understanding the Software Engineering Process

To be able to add:2ss such issues, an organization must have established a baseline understanding
of its current software produact and process characteristics, including attributes such as software
size, cost, and defects corrected. Once an organization has analyzed that basic information, it can
build a software model aud examine relationships. For example, the expected level of ¢ “ort can be
computed as a function of estimated software size. Perhaps even more important, understanding
processes makes it possible to predict cause and effect relationships, such as the effect on
productivity of introducing a particular change into a process.

This guidebook emphasizes the importance of developing models of a local organization’s specific
software engineering processes. However, a general understanding of the engineering of software
can also prove beneficial. It provides a foundation for appreciating which types of models and
relationships apply in a specific software development or maintenance environment.

For example, a manager should know that, in any environment, the amount of effort required to
complete a project is related to the size of the software product and that changing the size of the
staff will have an effect on the ability 1o meet scheduled milestones. The precise effect within the
local environment depends on a complex combination of factors involving staff productivity,
experience, and maturity. The parameter values that tailor the model to the unigue characteristics
of the local environment must be derived, over time, under the careful administration of the
measurement program.

Potential objections to establishing a measurement program and developing an understanding of
the current processes are numerous:

¢ My organization is changing too fast.

¢ FEach project is unique.

SEL-94-002

e Technology is changing too fast.
¢ Project results merely reflect the characteristics of the people on the projects.

¢ Idon’t care about future projects; I care only about current results.

Each of these objections may have some merit; nevertheless, it is essential to establish the baseline
before introducing change. Managers who have never collected data to confirm or challenge basic
assumptions about their environments may have inaccurate perceptions about the software
processes in use within their organizations.

Experience derived from many NASA programs shows that an organization establishing a baseline
understanding of its software engineering processe= and products should concentrate on collecting
measurement data to reflect certain key software characteristics. Table 2-1 suggests sample
characteristics and refers to four examples that illustrate the points using actual NASA

experience.

Tabie 2-1. Sample Software Characteristics

characteristics of software in my
organization?

activities—amount spent on design, code,
test, or other activities

Typical cost per line of code
Cost of maintenance

Hours spent on documentation
Computer resources required
Amount of rework expected

NASA
Understanding Key Characteristics Experience
What are the cost (resource) Distribution of effort among development Example

What are the error (reliability)
characteristics of software in my
organization?

Number and classes of errors found during
development or maintenance

How and when software deiects are found

Number and classes of errors fcund in
specifications

Pass/fail rates for integration and system
testing

Example

software to be developed relate
to the duration of the project and
the effort required? What is the
relaticnship between estimated
software size and other key
parameters?

Schedule as a function of software size
Cost as a tunction of size

Total number of pages of documentation
produced

Averagy siaff size

How does my organization’s rate Typical rate of growth of source code during Example
of source code production (or development

change) compare to previous Typical rate of change of source code during 3
experience? development or maintenance

How does the amount of Total number of lines of code produced Example

SEL-94-002

Example 1:
Effort Distribution Characteristics

Knowing the distribution of effort over a set
of software development activities can
contribute significantly to an understanding
of software engineering processes. One
NASA organization analyzed data from
over 25 projects, representing over 200
staff-years of effort on actual mission
software, to build the model shown i
Figure 2-2. The model of effert distribution
over a set of software development
activities, which may occur across various
phases of the software life cycle, s
invaluable for management planning on new
projects. The organization uses data from
ongoing projects to update the model,
which continues to evolve, providing more
accurate information for future project
managers in that environment.

Figure 2-2. Effort Distribution by Activily

Many software organizations mistakenly assume that a generic model of distribution
across life-cycle activities will apply for any organization and in any application domain. It
is possible to derive a model, or a hierarchy of models, with more general applicability.
For example, useful models can be derived by analyzing data from all software projects
throughout NASA or for all flight simulator softwar: projects throughout NASA.
However, local organizations can apply such models with varying degrees of confidence
and accuracy. Experience has shown that a model derived from, and updated with, data
collected within the specific software environment is a more accurate tool—a more
suitable means to a desired end.

Before local effort distribution was understood, managers had to rely on general
commercial models.? There was also no understanding of how much time software
developers spent on activities other than designing, coding, and testing software. In the
model shown, for example, the “other” category includes activities such as training,
meetings, and travel.

Experience has shown thit such models are relatively consistent across projects within a
specific environment. This model may not be directly applicable to other software
development environments, however, because of variables such as personnel, application
domain, tools, methods, and languages. Each software organization should produce its
own effort distribution profile.

2 Commercial models of effort distribution have historically recommended allocating 40 percent of project
resources to analysis and design, 20 percent 1o coding, 2nd 40 percent (o festing,

SEL-94-002

An organization must also decide which activities and portions of the software or system
life cycle will be included in the model or models. Even managers within the local
organization can use the model shown in Figure 2-2 only for development projects,
because no software maintenance data are included in the model. Any maintenance
organization, however, can develop a similar model. Further, the sample domain is limited
to software engineering concerns. An organization that develops or maintains complete
systems must establish and maintain models that include activities across the entire system
life cycle.

Example 2:

Error Distribution Characteristics
Another important part of understanding the software engineering process is being aware
of the common classes of errors. Software project personnel must understand not only
where errors originate and where they are corrected, but also the relative rates of error
occurrence in different classes. A measurement program provides the means to determine
error profiles. Software project personnel can use profiles of error characteristics to
improve development processes on future projects or on later stages of an ongoing
project.

Figure 2-3 represents a simple model of error characteristics for one NASA environment.
A large sample of NASA projects collected data representing more than 10,000 errors
over a S-year period. The definitions of the error classes are meaningful to the organi-
zation that collected and analyzed the data but may not be suitable in other environments.

Each organization must characterize the classes of errors that are important in its own
environment.

The distribution percentages shown in the model are specific to the organization that pro-
vided the data. Moreover, in this environment, the general profile of errors does not
change significantly across different projects. Although the error rate has steadily declined
over a period of years, the profile shown

has remained relatively stable. -

Computation a%?;iimﬂ

An environment-specific model of error 155
o

distribution can provide decision support

for }he planning and management of new : Logie/Cantrol
projects. A manager who notices that one __ 16%
class of error is becoming more common = -

can redirect effort to concentrate on that

class during inspections and reviews. An

error class distribution profile serves as a

measurement tool to help both

management and technical personnel

isolate errors earlier in the software life

cycle, reduce life-cycle costs, and increase

software reliability,
. Figure 2-3. Error Class Distribution

SEL-94-002

Example 3:

Software Growth and Change Characteristics
Insight into the rates of growth and change of source code also helps to build a better
understanding of software engineering processes. Code growth reflects the rate at which
source code is added to a controlled library; code change reflects modifications to the
controlled, or baselined, library. An understan.ding of the model for such rates can provide
a basis for determining if a new project is progressing as expected or if it is producing or
changing source code at a rate that differs from the organization’s historical profile.

Figurc 2-4 depicts the typical rate of growth of source code in a NASA environment. The
data were derived from over 20 software projects that followed a waterfall life cycle. This
information is used only to model typical projects in one particular environment, not to
determine the quality of a given process.

-

100 Design Code/Test Test Test

80 -
70
60
50
40

7

20 ~

% o1 Total SLOC

10 =

8 e o - — " - - - -

% of Scheduie

NOTE: SLOC = Source Lines of Code

Figure 2-4. Growth Rate of Source Code

Figure 2-5 shows the accumulated changes to source code during the development phases
in the same environment. Both of the profiles shown here were derived from measurement
data that were inexpensive to collect and analyze, and the resulting models are quite
stable.

11 SEL-94-002

System | Acceptance
9.00 Design Code/Test Test Test

8.00 —

!)
1 {
g 700 S | i
7]
X 600 - ' !
g | | [
& 500 t 1 1
g
] ! L} 1
S 400 4 | i
2
=1 .
3
5 200 —) i
(8]
) 1
100 [[
0.00 .] % 1
10 20 36 4 50 60 70 8 9 100
% of Schedule
NOTE: KSLOC = 1,000 Source Lines of Code
Figure 2-5. Change Rate of Source Code
Example 4:
Software Process Relationships

The functional relationships between product and process parameters provide additional
understanding of an organization’s software engineering processes. This understanding
can be applied to the planning and management of subsequent projects in the same
environment.

Figure 2-6 presents examples of a few key relationships that were found useful in several
NASA environments. A SEL report (Reference 8) discusses those and other such
relationships and how they can be applied. The relationship constants are periodically
revised to reflect evolving organizational models. After the historical database has been
created, the additional effort required to develop such relationships has proved to be small
and worthwhile, leading to increased understanding of the software engineering process.

2.2 Measurement for Managing Software

The second key reason for establishing an effective measurement program is to provide improved
management information. Having an understanding of the software environment based on models
of the process and on relationships among the process and product paramcters allows for better
prediction of process results and more awareness of deviations from expected results. Thus,
understanding the software engineering process leads to tetter management decision making. The

SEL-94-002 12

Effort (in staff-months) = 1.48 * (KSLOC)098
Duration (in months) = 4.6 * (KSLOC)026
Pages of Documentation = 34.7 * (KSLOC)?%
Annual Maintenance Cost = 0.12 * (Development Cost)

Average Staff Size = 0.24 * (Sffort)0-73

Figure 2-6. Sample Process Relationships

understanding comes from analyzing local data: without analysis, any data collection activity is a
waste of effort. The next step is to use the understanding that comes from the engineering models
to plan and manage software projec: activities.

Focus on applying results rather than collecting data.

A measurement program that focuses on the collection process, or that does not have a clear plan
for applying the acquired understanding, will fail.

Specifically, the knowledge gained about the software engineering process will be used to
o Estimate project elements such as cost, schedules, and staffing profiles
o Track project results against planning cstimates
o Validate the organizational models as the basis for improving future estimates

Engineering models and relationships provide a foundation for the software engineering estimates
that form an important part of the project management plan. Without accurate models based on
similar classes of software development and maintenance activities, project management success is
uncertain.

The next three sections address the use of models and relationships in more detail.

2.2.1 Planning and Estimating

One of the most critical responsibilities of a software project manager is developing a software
project maragenient plan, and one of the most important elements of that plan is a set of project
estmates for cost, schedule, staffing requirements, resource requirements, and risks.
Measurement results from similar completed projects are used to derive coftware engineering
models (providing an understanding of the environment), which, in turn, are used to develop the
estimates. The quality of the information in the historical databas. directly affects the quality of
the software engineering models and, subsequently, the quality of the planning estimates for new
projects.

i3 SEL-94-002

A manager who can produce a product size estimate based on software functionality requirements
can then derive such estimates as cost and schedule using organizational models and relationships.
The standard size estimates within the SEL are cumrently based on developed lines of code
(DLOC). (For a detailed discussion of DLOC—software size with a weighting factor applied to
reused code—see Reference 9 and Sections 4.5.2 and 6.1.2 of this document.) Given a product
size estimate and the distribution percentages shown in Table 2-2 (Reference 10), a manager can
derive project cost (measured as staff effort) and schedule estimates using the relationships

Effort (in hours) = DLOC / Productivity

where

Productivity = 3.2 DLOC per Hour
for FORTRAN, and
Duration (in montiis) = 4.9 (Effort [in staff-months])*>

for attitude ground support systems (AGSSs).

For example, assuming an estimated product size of 99,000 DLOC for an AGSS to be developed
in FORTRAN, a total effort of approximately 200 staff-months and a total duration of
approximately 24 calendar months can be estimated. The table also provides derived project
estimates for the cost and duration of each major life-cycle phase. In this model, the design phase
comprises requirements analysis, preliminary design, and detailed design, and the test phase
encompasses both system and acceptance test. Initial pianning estimates may have to be adjusted
for changes in requirements or schedule. It is also important to note that the specific parameters in
the relationships shown here are highly dependent on environmental factors, such as the local
definition of a line of code. Although anyone can use this model as a starting point, each
organization must analyze its data to derive its own distribution model.

Table 2-2. Distribution of Time Schedule and Effort Over Phases

Distribution Model Sample Derived Estimates
(Reference 10) (for 99,000 DLOC)
Completion Staff-
Life- Time Milestones Months
Cycle Schedule Effort (Months by (Allocated
Phases (%) (%) Phase) by Phase)
Design 35 30 84 60
Code 30 40 72 80
Test 35 30 84 60

SEL-94-002

14

2.2.2 Tracking

An important responsibility of software project management is tracking the actual size, effort,
budget, and schedule against the estimates in the approved plan. Successful, effective management
requires visibility into the progress and general status of the ongoing project, so that timely and
informed adjustments can be made to schedules, budgets, and processes. Periodic sampling of
project measurement data provides that visibility.

The extent and effectiveness of the project tracking process depends on the availability and quality
of a set of historical models and relationships. If the only available model is related to cost data,
then management tracking will be limited to cost information. However, a more extensive set of
derived models for staff size, software growth rate, software change rate, error rate, and other
parameters will facilitate a broader tracking capability.

Figure 2-7 illustrates the process of tracking the actual software growth rate? against the planning
estimates. In this illustration, the planned growth estimates are based on the model introduced in
Figure 2-4. A deviation of the actual values from the expected curve indicates simply that
something is different from the historical model. Such a deviation does not necessarily signal a
problem; rather, it can provide the program manager with an opportunity to explain the
difference. In particular, the deviation may have resulted from a planned improvement. For
example, a project that is reusing a larger amount of code than the typical past project may shcw
a sharp jump in growth rate when reused code is moved into the controlled library.

Sysiem | Acceptance

100 Desgn Code/Test Test Test
| |
90 - A 1
80 Expectad Range]]
Planned : :
70 Actual — | 0
(O]
S 60 - | | I
p I I |
B 50 i | |
° [] |]
- I I |
o 40
2 | 1 :
i
30 -
] i | {
2 i |]
' L
i
10 -
1 | |
Y — rd BT BT A B MO I TR I
10 20 30 40 50 80 7% 80 90 100
% of Schedule

Figure 2-7. Tracking Growth Rate

3 Software growth rate reflects the rate at which programmers complete the unit testing of source code. In Figure
2-7, the actual percentage of the tota :s computed with respect to the estimated size at completion.

15 SEL-94-002

2.2.3 Validating

Once a manager has the ability to track actual project measures against planning estimates, he or
she can begin to use any observed differences to evaluate the status of the project and to support
decisions to take corrective actions. Figure 2-7 also shows an allowable range of deviation around
the planned or expected values on the growth curve. Observing the trend of the actual growth rate
relative to the planned values can provide a management indicator of a healthy projeci (as
determined by a growth pattern within the expected range) or a potential problem that requires
‘urther evaluation to determine the cause (as is the case in Figure 2-7). With the insight gaired by
observing the trend, a manager can adjust staffing or schedule to get the project back on track.

Although it is obvious that an actual value below the allowable range may indicate a cause for
concern, it is perhaps less obvious that an actual value that falls above the allowable range should
also generate a management investigation. In this example, a software growth rate above the
allowable range may indicate that some other project activities are not being performed or,
perhaps, that the wrong model was used for planning and estimation. Consistent ana regular
deviations may also indicate a need to adjust the organization’s models.

Examples within this section have illustrated that a baseline understanding of the software
engineering process derived from historical results provides the essential model, which leads to
the planning estimate, which makes the tracking possible. The process of tracking actual versus
planned growth values provides the insight for validation, which facilitates adjustments by project
management. The fundamental element of measurement support for project management is
understanding the software engineering process.

2.3 Measurement for Guiding Improvement

The primary focus of any software engineering organization is to produce a high-quality product
within schedule and budget. However, a constant goal, if the organization is to evolve and grow,
must be continual improvement in the quality of its products and services. Product improvement
is typically achieved by improving the processes used to develop the product. Process
improvement, which requires introducing change, may be accomplished by modifying
management or technical processes or by adopting new technologies. Adoption of a new
technology may require changing an existing process. In any case, software measurement is a key
part of any process improvement program; knowing the quality of the product developed using
both the initial and the changed process is necessary to assert that improvement has occurred.

There are several popular paradigms for software process improvement. For example, the
Capability Maturity Model (CMM) for Software (Reference 11), produced by the Software
Engineering Institute (SEI) at Carnegie Mellon University, is a widely accepted benchmark for
software engineering excellence. It provides a framework for grouping key software practices into
five levels of maturity. A maturity level is an evolutionary plateau on the path toward becoming a
mature software organization. The five-level model, represented in Figure 2-8, provides a defined
sequence of steps for gradual improvement and prioritizes the actions for improving software
practices.

SEL-94-002 16

Continualty optimizing
Improving Process

Predictable Managed
Process

Standard, Defined
Consistent Process

Repeatable
Disciplined 2
Process

Initial

Figure 2-8. The Five Maturity Leveis of the CMM

The SEI provides the following characterization of the five levels:

1.

Initinl—The software process is characterized as ad hoc and, occasionally, even chaotic.
Few processes are defined, and success depends on the efforts of individuals.

Repeatable—Basic project management processes are established to track cost, schedule,
and functionality. The necessary process discipline is in place to repeat earlier successes on
projects with similar applications.

Defined—The software process for both management and engineering activities is
documented, standardized, and integrated into an organization-wide software process. All
projects use a documented and approved version of the organization’s process for
developing and maintaining software.

Managed—Detailed measures of the software process and product quality are collected.
Both the software process and products are quantitatively understood and controlled using
detailed measures.

Optimizing—Continuous process improvement is enabled by quantitative feedback from
the process and from testing innovative ideas and technologies.

The CMM is an organization-independent model that emphasizes improving processes to reach a
higher maturity level when compared to a common benchmark. Such a model presupposes thac
the application of more mature processes will result in a higher quality product. In contrast, the
SEL has introduced a process improvement paradigm for NASA ith specific emphasis on

17 SEL-94-002

producing a better product based on the individual goals of the organization. Figure 2-9 illustrates
the SEL's Understand/Assess/Package paradigm.

In the SEI model, a baseline assessment of an organization’s deficiencies, with respect to the key
processes defined at each of the maturity levels, determines the priority with which the
organization implements process improvements. In the SEL model, the specific experiences and
goals of the organization drive changes. (See Reference 12 for a more detailed comparison of the
two paradigms.)

PACKAGING

iterate Define, redefine, and tailor
processes and models on the basis of
new experiences

ASSESSING

¢ ldentify changes

¢ Set goals

¢ Choose processes and experiment
¢ Execute processes
UNDERSTANDING | ¢ Analyze data and determine impact

* Establish baselines
¢ Extract and define processes
¢ Build medels

Time ’

Figure 2-9. The Understand/Assess/Package Paradigm

2.3.1 Understanding

Section 2.1 introduced understanding as the primary reason for establishing a measurement
program; that same understanding provides the foundrtion for NASA’s process improvement
paradigm. To provide the measurement ba.is for its software engineering process imprcvement
program, an organization must begin with a baseline understanding of the current processes and
products by analyzing project data to derive (1) models of the software engineering processes and
(2) relationships among the process and product parameters in the organization’s environment.

As the organization’s personnel use the models and relationships to plan and manage additional
projects, they should observe trends, identify improvement opportunities, and evaluate those
opportunities for potential payback to the organization. As improvements are implemented, new
project measurement results are used to update the organization’s models and relationships. These
updated models and relationships improve estimates for future projects.

SEL-94-002 18

Improvement plans must be made in the context of the organization’s goals. Improvement can be
defined only within the -omain of the organization—there are no universal meacures of
improvement. An organizatio.: may base its process improvement goals on productivity, cost,
reliability, error rate, cycle time, portability, reusability, customer satisfaction, or other relevant
characteristics; however, each organization must determine what is most important in its local
environment. Using measurement as the basis for improvement permits an organization to set
specific quantitative goals. For example, rather than simply striving to reduce the error rate, an
organization can establish a goal of lowering the error rate by 50 percent. Determining the effect
of introducing change requires initial measurement of the baseline.

2.3.2 Assessing

Once an organization understands the current mcdels and relationships reflecting its software
process and product, it may want to assess the impact of introducing a process change. It should
be noted that a change is not necessarily an improvement. Deterivining that a change is an
improvement requires analysis of measures based on the organization’s goals. For example,
assume that an organizatior.’s goal is to decrease the error rate in delivered software while
maintaining (or possibly improving) the level of productivity; further assume that the organization
has decided to change the process by introducing the Cleanroom method (Reference 13).
Cleanroom focuses on achieving higher reliability (i.e., lower error rates) through defect
prevention. Because the organization’s primary goal is to reduce the error rate, there is no
concern that the Cleanrcom method does not address reuse, portability, mainisinability, or many
other process and product characteristics.

During a recent study (Reference 14), the SEL assessed the impact of introducing the Cleanroom
method. Table 2-3 shows the error rate and productivity measures for the baseline and the first
Cleanroom project. The results of the experiment appear to provide preliminary evidence of the
expected improvement in relability following introduction of the Cleanroom metho1 and may also
indicate an improvement in productivity. Chapter 6 provides additional details of the SEL
Cleanroom study.

Table 2-3. Impact of the Cleanroom Method on Reliability and Producltivity

Error Rate

(Errors per Productivity
Data Source KDLOC) {DLOC per Day)
Baseline 53 26
Cleanroom 4.3 40

NOTE: KDLOC = 1,000 Developed Lines of Coue

19 SEL-94-002

2.3.3 Packaging

NASA experience has shown that feedback and packaging of measured results must occur soon
after completion of an impact assessment. Packaging typically includes written policies,
procedures, standards, and guidebooks. High-quality training material and training courses are
also essential parts of the packages.

For example, to incorporate the Cleanroom method as an integral part of its software develop-
ment activities, an organizaticn must first prepare the necessary documentation and provide
training to all affected project personncl. Packaging is discussed in more detail in Chapter S.

SEL-94-002 20

Chapter 3. Establishing a Measurement Program

GoALs

Understanding the organization’s goals
Understanding measurement’s application
Setting expectations :
Pianning for early success

Score

s Focusing !ocally
» Starting small

ROLES AND RESPONSIBILITIES

s Providing data
s Analyzing and packaging
« Collecting and storing

SELECTING MEASURES

« Ensuring that measures are applicable ‘
o Minimizing the number of measures ;
s Avoiding over-reporting

) /ﬂ\v MEASUREMENT COSTS I
PARY, o Cost to developers or mainteiners

@f / « Cost of data processing
b) « Analysis and packaging costs

21 SEL-94-002

engineering activities, it is ready to establish a measurement program. The effective

application of information derived from measurement entails building models, identifying
the strengths and weaknesses of a particular process, and aiding the management decision
process. A clear, well-defined approach for the applicaticn and analysis of measurement
information will minimize the cost and disruption to the software organization. Building on the
advice of the preceding chapter, this chapter addresses the followirg topics and provides
recommendations for successfully establishing a new measurement program:

! fter an organization understands the roles that measurement can play in sofiware

e Understanding the organization’s goals

e Defining the scope of the measurement program

e Defining roles and responsibilities within the organization
e Seclecting the appropriate measures

e Controlling the cost of measurement

3.1 Goals

First, the organization must determine what it wants tc accomplish through measurement. This
requirement leads to the next rule:

Understand the goals.

The goals of an organiz: :on may be to increase productivity or quality, reduce costs, improve the
ability to stay on schedule, or improve a manager’s ability to make informed decisions. Typically,
an organization that is implementing a measurement program has all of these goals. Although it is
admirable to want to improve everything immediately, establishing priorities for achieving the
goals incrementally is essential. After clarifying the organizational goals, the organization must
recognize the need to establish a measurement program to achieve its goals.

Understand how to apply measurement.

If the goal is to improve productivity, for example, then the organization must know its current
productivity rate and understand its product and process characteristics. Both prerequisites are
supplied by measurement.

The resuits of a measurement program will be used in different ways at each level of the
organization. Senior management will be interested primarily in how the program improves the
capabilities and productivity of the organization and in the effect on the bottom line. Project
managers will be concerned with the impact on planning and managing current project efforts.
Software developers will be interesied in how the program wil! make work easier compared with

SEL-94-002 22

the impact of data collection requirements. Successful measurement programs begin by involving
ail participants in defining the goals.

Because personne! at different organizational levels will view a new measurement program from
different perspectives, the success of the program demands that those responsible for introducing
measurement follow the next rule:

Set expectations. 1

The implementation of a measurement program will inevitably introduce change; change will bring
some resistance and some initial problems. To minimize resistance, both management and
technical personnel must be prepared to expect and accept the change and to encourage others to
be persistnt and patient. Proper setting of expectations will enhance potential support and
acceptance from all management and technical personnel affected oy the changes.

|
Plan to achieve an early success.

The first project should be selected carefully with the objective of demonstrating evidence of early
benefits. Measurement programs sometimes fail because well-intentioned measurement
coordinators wait too long “for all the resuits to come in” before reporting progress to senior
management. It is critical to report preliminary results as soon as possible after establishing the
program. The startup investment is significant, so management must see an early return on that
investment, or the program is likely to be canceled before measurement analysts can provide “all
the results.” Equally imporiant, project personnel need to see evidence of the benefits of their
efforts to reduce their inevitable resistance. The early payoff may be, for example, a better
understanding of the typical classes of errors that are detected in the organization’s software
projects or an understanding of the relative amounts of time that personnel spend in coding as
compared with testing.

Although early feedback is essential for success, it is prudent not to promise substantial
improvement during the early phases of the program. Worthwhile analysis, synthesis, and
packaging take time and effort. Development and maintenance teams inust be conditioned to
expect gradual, incremental improvements.

3.2 Scope

After the goals of the measurement program are established and understood, measurement
personnel must define the scope of the program, making the fcllowing critical decisions:

e Which projects should be included in the organization’s measurement program?

e Which phases of the software life cycle should be included?

23 SEL-94-002

e Which elements of the project staff should be included; for example, is it important to
include the effort of secretarial support, publication support, and two or more levels of
management?

Those responsible for making these decisions must consider both the previously defined oals and
the need to gain acceptance from project persontnel who will be affected by the new reeasurement
program. The next two rules provide help in defining the scope.

Focus locally.

The scope of the measurement program should be limited to the local organization.
Organizational goa!s should have been based on the need for specific self-improvements, not for
making compariscns with others. Wher defining processes for data collection and analysis, it is
important to use concepts and terms that are understood locally. Precious effort should not be
expended developing universal or unnecessarily broad-based definitions of measurement concepts
and standards. Similarly, it is important to focus on developing a high-quality local measurement
data center. Combining local measurement data into larger information centers has never proved
beneficial and has consumed significant amounts of effort. Consultation with management and
software personnel can ensure proper focus and increase acceptance.

Start small.

When establishing a measurement program. it is always important to start with a small scope.
Limiting the number of projects, restricting the portions of the software life cycle to those with
already well-defined processes within the organization, and limiting staff involvement to essential
personnel will all help to minimize resistance from, and impact on, managers and development or
maintenance personnel. The scope of the program will evolve, but the time to increase the size of
the program is after it has become successful.

3.3 Roles, Responsibilities, and Structure

After the organizational goals are well understood and the scope of the measurement prograrn is
defined, the next step is tq define roles and responsibilities. In a successful measurement program,
three distinct roles must be performed by components of the organization:

1. The source of data—providing measurcment data from ongoing software development
and maintenance activities

2. Analysis and packaging—examining measurement data and deriving process models and
relationships

3. Technical sup~ 1—collecting, storing, and retrieving project information

Figure 3-1 illustrates the components and the relationships among them. Each component must
perform its distinct role while maintaining a close relationship with the other two components.

SEL-94-002 24

.
i

Source of Data
Provids objective information
Provide subjective information
Attend training
Produce lessons-leamed expenence project information
Use provided processes and models

g V.

update requests analysis reports

MainlammelnﬁepositoryJ
~ —

Technical Support

Write data collection procedures
Establish database structure

QA and feed back data

Archive data and documents

Produce standards and training
Provide feedback

Figure 3-1. The Three Components of a Measurement Program

The next sections introduce the components’ responsibilities in starting a measurement program
and map the components into the orgamzational structure. (Chapter 5 briefly describes the
operational responsibilities of the three components.)

3.3.1 The Source of Data

The responsibility of the development and maintenance component is to provide project data.
Providing data is the only responsibility imposed on the development and maintenance personnel;

25 SEL-94-002

they are not responsible for analyzing the data. These personnel can reasonably expect to be
provided with training that includes, at a minimum, the following information:

o Clear descriptions of all data to be provided

o Clear and precise definitions of all terms

e Who is responsible for providing which data

e When and to whom the data are to be provided

In exchange, the development and maintenance component of the measurement program receives
tailored processes, refined process models, experience-based policies a.d standards, and tools.

3.3.2 Analysis and Packaging

The analysis and packaging component is responsible for developing and delivering the training
that will provide the developers and maintainers with the specific information listed in the
previous section. Analysis and packaging personnel must design and develop the data forms and
receive the raw data from the repository. They are responsible for examining project data;
producing tailored development and maintenance processes for the specific project domain;
generating organization-specific policies and standards; and generalizing lessons, information, and
process models. This measurement program component continually receives data from the
developers and maintainers of software and, in return, continually provides organization-specific
experience packages such as local standards, guidebooks, and models.

Organize the analysts separately from the developers.

The analysis and packaging personnel are necessarily separate from the development and
maintenance personnel because their objectives are significantly different. Measurement analysts
are concerned solely with improving the software process. Software developers™ and maintainers’
concerns include product generation, schedules, and costs. It is impractical to expect personnel
who must deliver a high-quality product on schedule and within budget to be responsible for the
activities necessary to sustain continual improvement; hence, those functions must be the
responsibility of a separate component.

3.3.3 Technical Support

The technical support component maintains the information repository, which contains the
organization’s historical database. This component provides essential support services including
implementing the database as specified by the analysis and packaging component. The support
personnel collect data forms from the developers and maintainers on a prescribed schedule,
perform data validaiion and verification operations to identify and :eport discrepancies, and add
the project data to the historical database. They are also responsible for operating supplementary
software tools (e.g., code analyzers) and for preparing reports of the: analysis results. In addition,

SEL-94-002 26

the support personnel archive data and perform all other database management system (DBMS)
maintenance functions.

Example:
The Software Engineering Laboratory

Although their measurement roles and responsibilities are clearly distinct, the three
components may be organized in different ways within different organizations. A large
organization may benefit by creating separate, structural components to perform the three
distinct roles of the measurement program. A small organization with a small project may
simply assign the roles to individual personnel. In some cases, a single individual may
perform multiple roles as long as the amount of effort allocated to separate roles is clearly
identified.

For example, the SEL is an organization of moderate size with approximately 300
software developers and maintainers. The organization develops and maintains mission
support software t~: the Flight Dynamics Division at GSFC. Since 1976, the SEL has
collected data from more than 100 software development projects. Typical projects range
in size from 35,000 to 300,000 SLOC and require from 3 to 60 staff-years of effort. The
process and product data have been analyzed to evaluate the impact of introducing
methodologies, tools, and technologies within the local environment. In recent years, the
SEL has expanded the scope of its activities to include the study of software maintenance
(Reference 15). Process improvements, introduced as a result of continual measurement
activities within the SEL, have led to documented improvements in the organization’s
products.

Figure 3-2 illustrates the organizational structure of the SEL. In this example, the
technical support personnel who maintain the repository are administratively affiliated with
the analysis and packaging component but physically located with the source of data. This
structure works well in the SEL for two reasons:

1. Administratively, the required support personnel receive funding from the same
source as the analysis and packaging personnel. Developers and maintainers are
funded by a different source.

2. The physical environment is structured with the forms processing, database host
computing support, and library facilities collocated with the developers and
maintainers, so the support personnel occupy that same space.

Many alternative structures would be just as functional and successful. The important
feature is that the development and maintenance personnel are not responsible for analysis
and packaging. In addition, SEL models and relationships are affected by the fact that the
measurement program within this sample environment is limited to development and
maintenance of operational mission support software.* Organizations that include other
activities may derive significantly different models. Issues related to the cost

4Although the scope of the measurement program includes no data from prototype development or research
activities, the software personnel do perform such activities as a part of their jobs.

27 SEL-94-002

considerations shown in the figure are addressed in Section 3.5. Reference 16 provides
additional examples and details.

Source of Data
+ Ajl operational support software {no prototypes, |
- noR&D) f project development histories
-« Development from design through delivery subjective project information
and maintenance

e Each project manager responsible for
participation in measurement program

. Eﬁoﬁlesmanzpereenxaddiﬁona!ovemead ;

- 207 500 completed forms per week - models {e.g., cost, scheduie)

- requests for project information training courses {e.g., Principles of Flight Dynamics)
f Analysis and Packaging
* Active participation from design through deﬁvef;
- development slatus reports - and maintenance
= ; * Products
standard monthiy project reports : Mode -
Technical Support : | JNeM T
* Callocated with developers and maintainers * Funding primarniy from NASA
butc’;agmhistraﬁveryanmmam!ystsand' (somecontractorhm support)
packagers .
* Oicins 500sq.ft Effort about 7 percent of development
- * Uses Oracle DBMS - ad hoc database queries

* Two data technicians and two programmers - forms design
| » Effort ubout 4 percem of deve&opmem 2

- annual bibliography and coliected papers
- database user's guide

- resufts of special requests

Figure 3-2. The SEL as a Sample Structure for Process Improvement

3.4 Selecting the Measures

Another important step in establishing a measurement program is selecting the measures to be
used. Selected measures will fall inio one or more categories, including objective measures (direct
counts, obtained either manually or with the support of an automated tool), subjective measures
(interpretive assessments about the status of the quality or completion of the product), and project
characteristics (factual descriptions of the type, size, and duration of the project). Chapter 4
addresses measures in more detail. When selecting measures, the next rule is the most important:

Make sure the measures apply to the goals.

SEL-94-002 28

Measures should not be selected just because a published author has found them useful; they
should directly relate to the defined goals of the organization. For example, if there is no goal to
reduce processor time, it is a waste of time and effort to collect data on computer usage.

Keep the number of measures to a minimum.

Experiences from successful measurement programs within NASA suggest that a minimal set of
measutes is usually adequate for beginning a program and sufficient to fulfill all but the most
ambitious goals. A basic set of measures—which typically consists of data for schedule, staffing,
and software size—is introduced in the next chapter.

This rule—to limit the number of measures and, by implication, the size of the measurement
database—is a corollary of the rule to start small, which suggests limiting the scope of the
measurement pregram itself. The rule should be taken literally: if a single measure is sufficient to
address the organization’s goal, then collecting data on two or three will provide no added
benefits. For example, if the only goal is to improve quality, only defects should be measured; cost
and schedule data should not be a concern.

Avoid over-reporting measurement data.

Any measurement program can be potentially disruptive to a software project; therefore, analysts
must be cautious when providing feedback to development and maintenance personnel. Providing
too much feedback can be just as serious a mistake as providing not enough. Reporting the results
of analyzing all available measurement data is a waste of time, because much of the information
will provide no additional insight. When presented with unnecessary and excessive charts, tables,
and reports, software staff and managers may become annoyed and disenchanted with the value of
the measurement program.

Collected data constitute only a small part of the overall improvement program and should alv.ays
Le treated as the means to a larger end. The tendency to assume that each set of data has some
inherent value to the development and maintenance personnel and, therefore, should be analyzed,
packaged, and fed back to them, must be avoided. Feedback must be driven by a ne=d or directed
toward supporting a defined goal. If no focus has been established for the analysis of code
complexity, for example, then ihere will be no value in—and no appreciation for—the preparation
of a complexity report. Such a report would be disruptive and confusing and could dilute the
effectiveness of the measurement program.

The following common reports and graphs are often packaged and provided to the development
and maintenance organization, not because they are needed, but simply because the data exist:

e Code complexity
e Design complexity

e Number of tests executed

29 SEL-94-002

e Plots of computer usage

o Charts of numbers of requirements changes
e Profiles of program execution

e Charts of the time spent in meetings

Each of those measures may have some value when used in support of an organizational goal.
However, this type of information is too often reported because it is assumed to be inherently
interesting, not because it relates to a particular need or goal.

3.5 Cost of Measurement

Cost is one of the most critical, yet misunderstood, attributes of a software measurement
program. Many organizations assume that the cost of measurement is so excessive that they
cannot justify establishing a measurement program. Others claim that measurement can be a
nonintrusive, no-cost addition to an organization and will have no impact on the organization’s
overhead. The truth lies somewhere in between.

Budget for the cost of the measurement program.

Measurement is not free, but it can be tailored in size and cost to fit the goals and budgets of any
software organization. A measurement program must be undertaken with the expectation that the
return will be worth the investment. If the cost is not planned in the organization’s budget, there
will be frustrations, attempts at shortcuts, and a failed software measurement program. Planning
must incorporate all of the hidden elements of the proposed effort—elements that are often more
expensive during startup than after the measurement program becomes operational. The higher
startup cost is an additional reason to start small.

Planners often incorrectly assume that the highest cost will be to the software development or
mainienance organization. This part of the overhead expense, which includes completing forms,
identifying project characteristics, and meeting with analysts, is actually the least expensive of the
three major cost elements of the measurement program:

1. Cost to the software projects (development and maintenance overhead)
2. Cost of QA and of storing and archiving data (technical support overhead)
3. Cost of analyzing and packaging (measu: _ment application overhead)
The cost of the measurement program also depends on the following considerations of scope:
e Size of the organization
e Number of projects included in the measurement program

¢ Extent of the measurement program (parts of the life cycle, number of measures, etc.)

SEL-94-002 30

NASA experience shows that there is a minimum cost associated with establishing and operating
any effective measurement program. The total cost will increase depending on the extent to which
the organization wants, or can afford, to expand the program to address additional projects, more
comprehensive studies, and broader measurement applications.

The cost information offered in this section is based on 17 years of experience from organizations
ranging in size from approximately 100 to 500 persons. Additional information has been derived
from measurement programs in larger organizations of up to 5,000 persons. The number of
projects active at any one time for this experience base has ranged from a low of 5 or 6 projects to
a high of over 20 projects, ranging in size from 5 KSLOC to over one million SLOC. Because
measurement costs depend on a large number of parameters, citing a single definitive value that
reoresents the cost of any organization’s measurement program is impossible. However, some
general suggestions can be provided, and organizations can interpret these suggestions in the
context of their own goals and environments.

Generally, the cost of measurement to the development or maintenance project will not exceed
2 percent of the total project development cost and is more likely to be less than 1 percent (which
implies that the cost may be too small to be measured). The technical support element may reach
a constant staff level of from one to five full-time personnel for daia processing support. The
analysis and packaging element will require several full-time analysts and may cost up to
15 percent of the total development budget. For example, the SEL spends an average of about
7 percent of each project’s total development budget on analysis and packaging.

Figure 3-3 illustrates the costs of the elements of a software measurement program as percentages
of the total organizational cost. Individual costs are discussed in more detail in the following
sections.

Mid-Size Organizations Large Organizations
(Appreximately 100-500 Persons) (Approximately 500-5,000 Persons)
* Develop modeils
(processes) 10-15 people
207 * Analyze results 31
® Train staft
* Define)
experments
8 154 Xperm N
0 n 6-8 people
5 5 2
§ ® Archive results §
h . c
104 ¢ Maintain ©
database S
= * QA ®
2 e "
S 54 S
® * Fill out forms ®
® Provide data
0 I 2% | 3-7% 6-15% 0 <1% <2% <3%
Project Data Processing Analysis/ Project Data Processing Analysis/
Overhead Cost Application Overhead Cost Application

Figure 3-3. Cost of Software Measurement

31 SEL-94-002

3.5.1 Cost to Development and Maintenance Component

The cost of measurement should not add more than 2 percent
to the software development or maintenance effort.

The smallest part of the measurement cost is the overhead to the development and maintenance
organization. This overhead comprises the cost of completirg forms, participating in interviews,
attending training sessions describing measurement or technology experiments, and helping to
characterize project development. Although startup costs may be as high as 5 percent of the
development budget, the cost of operating an effective program will normally not exceed 1 or 2
percent, regardless of the number of active projects within the organization.

Legitimate costs are associated with introducing the providers of data to a new measurement
program. However, part of the higher initial cost can often be attributed to the inefficiencies in an
inexperienced organization’s program. New programs typically ask developers or maintainers to
complete unnecessary forms or require excruciating detail that is of little value or is not a part of
the stated goal. A well-planned measurement program will never impose a significant cost impact
on the development or maintenance organization.

3.5.2 Cost of Data Processing

The data processing element of the measurement program may
cost from 3 to 7 percent of the total development budget.

The technical support (i.e., data processing) element of the measurement program encompasses
collecting, validating, and archiving the measurement data. Included in these activities are
database management, library maintenance, cxecution of support tools, and high-level reporting of
summary measurement data. These essential activities must be planned, supported, and carefully
exccuted. In addition to the cost of personnel are the costs of acquiring and maintaining database
software, support tools, and other automated processing aids (e.g., code analyzers).

In an organization of over 50 management, technical, and clerical nersonnel, any measvrement
program will require three to five full-time staff members 1o handle the necessary support tasks. A
smaller organization, with perhaps only one project and a pilot measurement program, may wish
to combine the data processing effort with configuration management (CM) or independeat QA
activities. Implementation of a separate data processing support element may not be cost
effective.

Experience within NASA has shown that the cost of the data processing tasks for measurement
programs involving 100 to 200 software developers or maintainers is approximately 7 percent of
the total effort. That cost includes approximately five full-time data technicians and database
support personnel, plus the costs of the DBMS and associated software tools and equipment. For
larger measurement programs with 250 to 600 software personnel, experience indicates that only
one additional full-time support person is required. Thus, for organizations with 50 to 600
de .elopers and maintainers, the overhead cost is approximately 6 percent of the proje~ cast. For
organizations with approximately 500 to 1,000 software personnel, the overhead cost approaches
3 percent of the project cost or about seven full-time personnel added to the cost of tools and
equipment.

SEL-94-002 32

The cost estimates are based on the assumption that an organization is actively working on 5 to
15 development or maintenance projects at any one time. The overall cost of the data processing
element will vary significantly depending on the number of projects participating in the
measurcment program. An organization of 200 or 300 people actively working on a single large
project will require much less support than the same organization with 20 active smaller projects.
Limited experience with larger organizations of over 5,000 persons indicates that the data
processing support cost is essentially the same as for an organization of 500. As its size increases,
an organization tends to collect measurement daia at a less detailed level.

3.5.3 Cost of Analysis and Packaging

The ceost of the analysis element of the measurement program
ranges from 5 to 15 percent of the total project budget.

Analysis and packaging is the most critical part of the measurement program and the most costly
of the three elements of cost overhead. Without a sufficient allocation of effort to this function,
the measurement program cannot be a success.

Flan to spend at least three times as much on data analysis and use
as on data collection.

Packaging is the culmination of all measurcment activities and the primary purpose for the
imeastrement prograi.

Key activities associated with this element are
o Design of process studies (determining what is to be measured)
¢ _nformation analysis (e.g., analysis of data and synthesis of madels)

o Project interaction (clarifying the purposes of measurement, training developers, providing
feedback to projects)

e Packaging (producing standards, policies, and training piograins and capturing
assessments of analvzed processes)

NASA experience shows that the cost of this element in successful measurement programs far
exceeds the combined costs of the other two. A successful measurement program dictates that
this cost be recognized and budgeted. For measurement programs involving 50 to 250 software
developers or maintainers, the cost of this activity has consistently run from approximately 7 to 12
percent of the organization’s total budget. Costs are incurred by the researchers who design
studies and de-elop new concepts, by the process staff responsible for developing and writing
standards, and by all the personnel required for analyzing, providing feedback, and developing
improvement guidelines. The analysis and packaging portion of the measurement costs depends
on the number of projects active within the organization. The figures provided here assume at
least 10 active projects and an archive of data from at least 15 projects available for analysis. With
fewer active projects, the analysis overhead would be smaller than indicated.

33 SEL-94-002

NASA'’s historical data indicate that organizations spending between $20 million and $30 million
for development and maintenance projects have spent between $1 mullion and $3 million for
extensive and mature analysis efforts (in fiscal year 1993 dollars). For efforts o1 a much larger
scale, the measurement analysis musi necessarily be conducted on a comparably higher level;
consequently, the overhead percentage decreases significantly. An expenditure of an equivalent
amount of analysis resources, plus a modest increase due to the size of the organization, need not
exceed the 5 percent level for measurement programs of any size. Becausc application of the
measurement data is the primary reason for the measurement program, adequate resources must
be allocated for this critical measurement program element.

SEL-94-002 34

Chapter 4. Core Measures

Chapter Highlig
8 CosT

A

.l :
%;ﬁ” g * Reporting pericd dates
e « Total effort

a. %j + Eftort by development and maintenance activity

ERRORS

« Dates error reported and corrected
+ Etfort to isointe and correct the enror
* Source and class of error

PRroCESS CHARACTERISTICS

» identification of programming languages
« Irddication of the use of significant processes
« Description of measurement study goals

ProJect Dynamics

Changes fo requirements
Lhanges to code

Growth of code
Predicted characteristics

ProJECT CHARACTERISTICS

« Developrment dates
Total effort
Project size
Component information
Software cleesiication

SEL-94-002

his chapter describes a set of core measures that any organization can use to begin a

measurement program. There is no universal, generally applicable collection of measures

that will satisfy the needs and characteristics of all organizations. However, on the basis
of the experiences of mature measurement programs throughout NASA, a set of measures in the
following five categories will typically be required by any software development and maintenance
organization:

1. Cost

2. Emrors

3. Process characteristics
4. Project dynamics

S. Project characteristics

Although organizations beginning a measurement program may want to use the core set as a
baseline, they will soon find that additional information is required to satisfy their specific goals
and that some of the core measures are not required. Each organization should use those
measures that reflect its own goals. As its measurement program matures, the organization will
recognize which measures support those goals and which provide no added value.

The recommended core measures in each of the categories exhibit the following important
attribvtes. They

e Address the three key reasons for measurement
1. Understanding
2. Managing
3. Guiding improvement
e Support both software development and software maintenance activities
e Are easy to collect and archive
e Are based on the experience of mature NASA measurement programs

The following sections provide further information on the core measures.

4.1 Cost

Cost is the mo-t universal and commonly accepted measure for understanding and managing
software processes and products. Consequently, cost data represent the most essential part of any
measursment program. Although mz..y development organizations assume that the cost data must
be extensive and detailed to capture the overall cost characteristics of a software project
adequately, the cost data should actually be easy to capture. If a programmer needs more thar- a
few minutes each week (on the average) to record his or her effort, then the forms require too
much data. As long as the managers are aware of the total amount of effort required for the
software projects, an organization can gain a significant amount of insight by observing the trends

SEL-94-002 36

over time. The simplest, yet most critical, cost measure is the record of the total expenditures for
a project.

4.1.1 Description

Collect effort data at least monthly.

Every project must capture staff effort data on a consistent, periodic basis. A monthly schedule is
recommended, at 2 minimum; however, many major NASA measurement programs capture effort
data biweekly or even weekly. The higher frequency requires little additional work and provides
more project characterization detail.

Clarify the scope of effort data collection.

The scope of the effort data collection depends on the organization’s goals. Each organization
must determine precisely who will supply effort data, at what point during the software life cycle
measurement will begin, and when data collection will terminate. Typically, effort data must be
collected for all personnel who charge their time to the software project, specifically, technical,
management, secretarial, and publications staff.

For every data reporting period, each individual must minimally report the total number of hours
of effort and a breakout of the number of hours per activity (e.g., design, code, test, or other).

A decision concerning the reporting of unpaid extra hours of effort must be based on whether the
intent is to measure the actual effort expended or the actual effort charged. Some organizations
maintain separate records of urpaid overhead hours.

Within the SEL, every programmer and every first- or second-line manager provide effort data.
Data collection starts when the functional requirements have been completed and the software
requirements analysis phase begins. For development projects, data collection continues until the
system is tumed over for operational use. For maintenance projects, data collection starts at the
beginning of the operations phase and continues until the analysts determine that no additional
value will be gained from further collection. Each maintenaice project is judged on its own merits.
Some may provide data for 1 year only, whereas others provide data until the software is retired.

4.1.2 Data Definition

When the measurement program is first established, personnel from the analysis component must
define the activities to ensure clarity and internal consistency. Focus should be on using locally
developed definitions for the activities. Excessive time should not be spent trying to be consistent
with outside organizations.

37 SEL-94-002

All project personnel (e.g., programmers, managers, QA staff, CM staff, and testers) provide the
data listed in Table 4-1. Additionai resource data on the documentation effort (total hours by
publications) and the clerical effort (total hours charged by secretarial support) may be extracted
from project management accounting records, as long as there is a definition of scope and
characteristics. The data must be consistent from project to project and should provide an
accurate history of the cost required to produce and to maintain the software product.

Table 4-1. Data Provided Directly by Project Personnel

Data Descriptions

All Effort

Date Date of the end of the reporting period

Total effort Total hours charged to the project during that period
Development Activity Only

Hours by development activity Predesign

Create design

Read and review design
Write code

Read and review code
Test code units
Debugging

integration test
Acceptance test

Other

Maintenance Only

Hours by maintenance class Correction
Enhancement
Adaptation
Other

Hours by maintenance activity isolation

Change design

impiementation

Unit test and system test
Acceptance test and benchmark test
Other

The SEL Personnel Resources Forms (see Figures A-5 and A-6 in Appendix A) and the Weekly
Maintenance Effort Form (see Figure £.-13) are examples of forms used to capture effort data for
development and maintenance projects, respectively. Programmers and managers typically
complete a form every week. Both forms provide space for recording total hours and the
distribution of hours by activities. To reduce questions and confusion, the definitions of the
activities are supplied on the forms. Other organizations may use different definitions as long a.
they are applieu consistently throughout the organization’s measurement program.

SEL-94-002 38

Figure 4-1 summarizes the lifecycle phases, so:urces, and frequency for cost data collection.
Typically, organizations separate the costs of development and maintenance activities.

cost [Mmammmelmammeel prwey| Ousts | Crgma | ymen acomone] Groremr
Phases: (I |

Source: Managers, programmers, and accounting records

__F:w At least monthly; more frequently if needed

Figure 4-1. Cost Data Collection Summary

4.2 Errors

Error data make up the second most important category of core measures. A better understanding
of the characteristics of software defects is necessary to support a goal of higher quality and
greater reliability. Error data may minimally include only counts of dsfects detected during a
specific life-cycle phase; at the other extreme, error data may include detailed descriptions of the
characteristics of the errors and information on where the errors came from, how they were
found, and how they were corrected. The level of detail must be driven by the goals and needs of
the particular organization. This section recommends core error measures based on those
collected within a successful measurement program in a medium-sized NASA organization.

4.2.1 Description
The core error measures consist of the
e Date the crror was found
e Date the error was corrected
e Effort required to isolate and correct the error
e Source of the error

e Error class

When the measurement program is first established, the measurement analysts must define the
scope of the error reporting activity.

Collect error data only for controlled software.

Error data should be captured only after a unit of software has been placed under configuration
management control. This recommendation, which is based on 17 years of experience, may seem
counterintuitive. However, until CM checkout and checkin procedures have been established as
prerequisites for making changes, consistent error reporting cannot be guaranteed. Usually, a unit

39 SEL-94-002

is turned over for configuration control only after it has been coded and, in some organizations,
unit tested. An organization that places unit designs under CM control, however, could begin to
capture error data at that earlier point in the life cycle.

Do not expect to measure error correction effort precisely.

Programmers focusing on their technical activities may not be able to report the exact amount of
time required for a particular change. Forms should allow them to estimate the approximate time
expended in isolating and correcting an error.

4.2.2 Data Definition

After completing a software change, a programmer submits the appropriate change form with the
data shown in Table 4-2. A change form is required whenever a controlled software component is
modified, whether or not the detection of an error necessitated the change. Experience has shown
that the process of reporting such changes enhances configuration management and that the
information proves useful in modeling the dynamics of the software in an organization. In addition
to the measures already cited, a maintenance change form must include the type of modification.
As always, it is important to focus locally when defining the error classes.

Table 4-2. Change Data

Data Descriptions
All Changes
Date error reported Year, month, and day
Date ervor corrected Year, month, and day |
Source of = .or Requirements, specification, design, cod.2,
previous change, other
Class of error Initialization, logic/conirol, interface, data,]
computational
Effort to isolate error Approximate number of hours
Effort to implement Approximate number of hours
change
Maintenance Changes Only
Type of modification Correction, enhancement, adaptation

SEL-94-002 40

The SEL Change Report Form and the Maintenance Change Report Form (see Figures A-1 and
A-4 in Appendix A) are examples of forms used to capture error data for development and
maintenance projects, respectively. In either case, a sir. zle form is used to report both sofiware
errors detected and software changes to correct the errors. Programmers use only one form to
report one error that requires changes to multiple components.

Figure 4-2 summarizes the life-cycle phases, sources, and frequency for error data collection.

Regt Req s| Prelrwnary Detaded Cuding and ISystem Acceptancel Operaton and
ERRORS Definhion Anatysis Design Design Unit Testing lTesnng Teshng Mantenance

Phases: ¢ L !
As soon as units are under CM control

Source: Programmers and automated tools
Frequency: Whenever a controlied unit is modified

Figure 4-2. Error Data Collection Summary

4.3 Process Characteristics

Do not expect to find generalized, well-defined process measures.

Focusing on the process characteristics category of software measures allows investigation into
the effectiveness of vanous software engineering methods and techniques. Looking at process
characteristics also provides insight into which projects use related processes and can thus be
grouped together within the measurement program to derive models and relationships or to guide
improvements.

Because few process features are consistently defined and can be objectively measured, few core
measures are recommended in this category. Rather than capturing extensive process
characteristics, it is suggested that some basic information be collected about the development
process used for the project being measured.

4.3.1 Description
The recommended core process measures are limited to the following three:
1. Identification of development language(s)

2. Indication of the use of specific processes or technology [e.g., the Cleanroom method or a
particuiar computer-aided software engineering (CASE) tool]

3. Description of measurement study goals

Common descriptions of measures do not exist for such fundamental software engineering
process elements as methodology, policies, automation, and management expertise. Therefore,

41 SEL-94-002

recommending that such measures be included in the core set is not useful. Measures such as
these must be defined and analyzed locally for consistency with the organization’s goals.

Do not expect to find a database of process measurements.

Detailed process descriptions cannot be stored in a database. Instead, important process
information is often provided in papers and reports. For example, if an organization is studying
the impact of using different testing strategies, the analysts must capture the detailed information
about the results of applying different techniques and report on the results.

Understand the high-level process characteristics.

Before attempting to capture advanced process measurement d.'ta, an organization must have a
clear understanding of the core process measures. Experience within the SEL has shown that the
most important process characteristic is the choice of programming language; the availability of
this information may provide further insight during the analysis of other measurement data.

4.3.2 Data Definition

Table 4-3 summarizes the core process characteristics measures. Figure 4-3 summarizes the life-
cycle phases, sources, and frequency for process characteristics data collection.

Table 4-3. Process Characteristics Data

Data Descriptions

Development language Language name: percentage used
Language name: percentage used

Important process characteristics | One-line textual description (e.g.,
(if any) “used Cleanroom”)

Study goals Brief description of the goals and
results of the measurement study
associated with the project

SEL-94-002 42

PROCESS Req 7y Requ it Prebmunary | Detasled Coding and System Operation andJ

CHARACTERISTICS Defintion Analysis Design Design Unst Testing Testing | Testng Mantenance
Phases: VAN
Source: Analysis and packaging personnel
Frequency: At the completion of the development phase

Figure 4-3. Process Characteristics Data Collection Summary

4.4 Project Dynamics

The next category of core measures—project dynamics—captures changes (to requirements, to
controlled components, and in the estimates for completion) during the software life cycle.
Experience has shown that such information aids management and improves understanding of the
software process and product.

4.4.1 Description

The core measures in this category characterize observed changes in the project requirements and
the product code, as well as predicted changes in the software end product. These measures
consist of

e Changes to requirements

e Changes to bascline code

e Growth in baseline code

¢ Predicted product characteristics

Requirements changes represent the overall stability of x> software requirements and can be used
effectively to manage the development effort and to improve understanding of the characteristics
of the software problem definition in the local environment.

Records of changes to the code and the growth of the code provide insight into how the various
phases of the life cycle affect the production of software, the most tangible product that a
development process generates. Change measures are useful in managing ongoing configuration
control processes, as well as in building models of the development process itself.

The measures of predicted product characteristics are excellent management aids and are useful
for studying the cause and effect of changes, as well as process and problem complexity. The
characteristics should be captured on a regular basis, at least monthly.

4.4.2 Data Definition

The Project Estimates Form (see Figure A-8 in Appendix A) is an example of a form used to
provide predicted product characteristics at the start of the project and periodically throughout

43 SEL-94-002

the life cycle. Table 4-4 summarizes the core project dynamics measures, and Figure 4-4
summarizes the life-cycle phases, sources, and frequency for project dynamics data collection.

Table 4-4. Project Dynamics Data

Data Descriptions

Changes to requirements | Count and date of any change
made to the baselirned
requirements specii.zations

Changes to code Weekly count of the number of
software components changer

Growth of code Biweekly count of ihe total
number of components and total
lines of code in the controlled
library

Predicted characteristics | Monthly record of the estimated
completion dates and software
size

Dates End design

End code

End testing
System completed

Size Total compon :nts
Total lines of code (new, reused,
modified)

Effort Total staff months (technical,
management, support services)

PROJECT Requi Requirements] Preliminary Detailed Coding and System |Acceptance| Operation and
DYNAMICS Derinition Analysis Design Design Unit Testing Testing Tasting Maintenance
Phases: L]
Source: Automated tools and managers

Frequency: Weekly, biweekly, or monthly (see Table 4-4)

Figure 4-4. Project Dynamics Coilection Summary

4.5 Project Characteristics

The core measures that characterize the completed project constitute another essential part of the
measurement program. Organizations derive models and relationships from project chzracteristics

SEL-94-002 44

in the historical database. Without a basic description of the overall software project effort, it is
difficult to apply the other measurement information in a meaningful manner.
4.5.1 Description
The project characteristics can be broken down into five categories of core measures:
t. Development dates
. Total effort

2

3. Project size
4. Component information
5

. Software classification

Use simple definitions of life-cycle phases.

The important dates are the beginning and the end of each lifecycle phase and the final project
completion date. If the organiration is using a strict waterfall life cycle with nonoverlapping
phases, then the end of a nonterminal phase is defined by the beginning of the subsequent phase.
When a different life-cycle methodology is applied, the organization will have to adjust the
structure of the project characteristics data. Each organization must determine how it wants to
capture details of the key phase dates within the software life cycle. The simplest approach is to
use the classical phase definitions of a standard life-cycle methodology. However, as long as an
organization has its own consistent internal definitions, there is no overwhelming reason to adopt
an external standard. Multiple releases can be treated as multiple projects or as a single project
followed by maintenance enhancements. .

The total effort expended on the project should be divided into hours used by programmers,
managers, and support services. At the conclusion of the project, the totals should be determined
from accounting information or another official source. The sum of the effort data collected
during the development or maintenance project should be compared with the value obtained from
the alternative source to cross-check the accuracy.

The core size measures are the total size of the software product and the total number of
components within the product. NASA experience shows that archiving additional details about
the origin of the code (e.g., whether it is new, reused, or modified) can lead to useful models.

Use lines of code to represent size.

-

NASA programs typically measure software size in terms of lines of code. Some authorities
recommend other size measures [e.g., function points (see Reference 17)]. Huwever, no other
measure is as well understood or as easy to collect as lines of code.

45 SEL-94-0L.

This guidebook also recommends collecting size and origin information for software components
and defines a software component as a separately compilable unit of software for the project being
measured. Some organizations define components as subprograms or subsystems, whic.s is fine as
long as the organization applies that definition consistently and derives useful resu.ts. The SEL
captures the basic information for cach separately compilable unit of source code and has found
that the overhead required to extract the information using an automated tool is trivial. As a
result, programmers can be freed from expending additional effort in providing that information.

The final category of project characteristics core measures is software classification. This measure
is abstract and of limited value. Consequently, most organizations are advised to spend only
limited effort collecting and analyzing classification data. Nevertheless, several NASA
organizations have found a high-level classification scheme to be both adequate and useful. These
organizations use three broadly defined classes:

1. Business or administrative applications
2. Scisntific or engineering applications
3. Systems support
Other organizations may want to record more detailed classification data, such as
¢ Embedded versus norembedded
e Real-time versus nonreal-time

e Secure versus nonsecure

4.5.2 Data Definition

The recording of project characteristics data can often be substantialiy automated to minimize the
burden on the development and maintenance organization. Dates and effort, for example, are
normally available from management accounting reports; automated tools frequently can he used
to report size and component information, and the time and effort needed to indicate software
classification is minimal. Table 4-5 summarizes the project characteristics data.

No universally accepted definition exists for the start and stop times of various phases, such as
when a project starts or when a design ends. Experience within NASA has led to the use of phase
dates as follows:

e Start of software development—delivery of functional requirements documents
o End of requirements analysis-——compietion of specifications review

e End of design—completion of design review

e End of coding—completion of code and unit test

o Erd of testing—delivery to acceptance testing

o End of development—delivery to operations

SEL-94-002 46

Table 4-5. Project Characteristics Data

Data

Descriptions

Dates

Phase start dates (year, month, and day)

End date

Requirements analysis
Design
implementation
System test
Acceptance test
Cleanup

Maintenance

Projec: end

Effort

Total hours

Project
Management
Technica! personnel
Support services

Size

Project size (lines of code)

Other (count)

Delivered
Developed
Executable
Comments

New

Extensively modified
Slightly modified
Reused

Number of components
Pages of documentation

Component information (for each component)

Componert size (lines of code)

Component origin

Total
Executable

New

Extensively modified
Slightly modified
Reused

Software classification

Business/administrative
Scientific/fengineering
Systems suppon

47

SEL-94-002

The effort data, compiled at the conclusion of the project, are used as part of the high-level
summary information for the project. The information represents the total cost of the project
broken down among developers, managers, and support services.

Table 4-5 lists several measures for lines of code. Consensus may never be reached on what
constitutes a line of code. Therefore, to facilitate varicus forms of comparison and analysis, this
guidebook recommends recording muitiple values. The core measures include counts of

e Total lines delivered—every logical line, including comments, blacks, executable, and
nonexecutable

o Developed lines—total lines with a reuse factor

o Executable statements—total number of executable statements

e Comment lines—total number of lines containing only comments -r blanks

The SEL captures source lines of code in four categories:

1. New—code in new units

2. Extensively modified—code for reused units in which 25 percent or more of the lines were
modified

3. Slightly modified—code for reused units in which fewer than 25 percent of the lines were
modified

4. Reused verbatim—-code for units that were reused with no changes

For estimation purposes, lines of code are often classified into two categories tha. combine newly
written and extensively modified units as new code and slightly modified and verbatim code as
reused code. Consequently, the SEL relationships (see Reference 9) for estimating developed
lines are

FORTRAN developed lines = new lines + 20% of reused lines
Ada developed lines = new lines + 30% of reused lines
(See Sections 2.2.1 and 6.1.2 for more discussion of developed lines of .de.)

Specify which software is to be counted.

It is important to be specific about which software is to be included in the size counts. For
example, it is usually appropriate to exclude throw-away prototypes, test hammesses, and
commercial off-the-shelf (COTS) software from the reported totals.

Component information can provide insight into the overall development characteristics. Although
the total amount of information may be extensive, it should be easy to compile at the conclusion
of the project and can be almost completely retrieved via automated software tools such as code
counters, auditors, or analyzers.

SEL-94-002 48

The Project Completion Statistics Form (see Figure A-7 in Appendix A) is an example of a form
used for collecting project characteristics at the completion of a project. Figure 4-5 summarizes
the life-cycle phases, sources, and frequency for project characteristics data collection.

PROJECT Regur Roqs Prok Detaled Codng an: Systern {Acceptancel Operabor: and
CHARACTERISTICS W{"‘"“;I Desgn

Desgn Und Testing Testng | Teseng | Mmrssnence
Phases- FaN
Source: Agtomated tools and managers
Fraquency: At the completion of the development phase

Figure 4-5. Project Characteristics Collection Summary

49 SEL-94-002

Chapter 5. Operation of a Measurement Procgram

TECHNICAL SUPPORT

= Collecting dala
- Interface with data p
- Definitions
Storing data and assuring data guality
Summarizing, reporting, and exporting data

ANALYSIS AND PACKAGING

Designing studies
Analyzing data
Packaging the resulls
Policias and standards
Training
Automated tools
Beporis
Updales

tiy 5V TSN 1% 51 SEL-94-002
PRECEOING. PARE BLANK MOT FILMED

aving established a measurement program, the organization must shift its emphasis to
operation. Chapter 3 introduced the three organizational components of a measurement
program: development and maintenance, technical support, and analysis and packaging.

After briefly describing mechanisms for collecting project data, this chapter expands on the
operational responsibilities of those three components.

Figure 5-1 illustrates that mechanisms for data collection fall into the three primary categories
listed below. Each category provides a particular type of data and requires a specific interface
between pairs of organizational components.

3

Printed jorms—The forms are designed by the analysis and packaging component,
completed by the development and maintenance component, and submitted directly to the
technical support component. All forms require the submitter to provide identifying
information, such as the project name. the team member’s name, and the date. In addition,
each type of form is designed to provide some of the measures that satisfy the goals of the
measurement program. Some forms request both objective data (lirectly observed) and
subjective data (based on opinion). All require only short answers or the selection of
options from a checklist. Appendix A includes a sample set of data collection forms used
in the SEL and designed to provide the measurement data stored in the SEL’s historical
database. An organization establishing 2 measurement program can use these forms as a
startin_ point in designing its own set of organization-specific forms.

. Automated tools—Some data can be collected automatically and unobtrusively by software

tools. For example. code analyzers and compilers can count lines of code; operating
system accounting packages can supply data about processor and tool usage; and
organizational accounting systems can typically report hours of effort by interfacing with
the time card system.

. Personal interviews—Some information can be captured only during personal interviews.
Interviews are typically used to obtain subjective information about project status and to
verify preliminary results of data analysis.

Measurement Data

Figure 5-1. Three Data Collection Mechanisms

Occasionally, there may be other process and product information sources that do not fall neatly
into one of the three categories. For example, personnel often have insights during document or
code reviews. Any information that can be useful within the organization’s measurement program
should be exploited.

Figure 3-1 illustrates the operational relationships among the three components of the
measurement program.

5.1 Development and Maintenance

Personnel whose primary responsibility is developing or maintaining software must not be
burdened with heavy measurement program duties.> The measurement program musi be designed
so that it is deemed to be a help, not a hindrance, to development and maintenance personnel. The
operational responsibilities of the development and maintenance component are

o Providing data
e Paticipating in studies

5.1.1 Providing Data

Project personnel are responsible for completing data forms that should have been designed for
simplicity. At project initiation, the project characteristics (discussed in Chapter 4) are provided to
establish a baseline. Throughout the life of the project, measures must be provided on a regular
schedule, as agreed upon by the analysts and management. Possibly the most important data to be
provided by the development team are the accurate final project statistics (see Figure A-7). These
data are often overlooked in an immature measurement program.

The process for submitting completed forms must be equally simple. Developers and maintainers
must be able to deliver forms to a specified, convenient location or hand them to a designated
individual and then forget about them. A representative of the technical support component will
be respons.ole for collecting the forms and initiating the data entry process.

Occasionally, developers and maintainers are asked to meet with the analysts. Although vitally
important, these meetings must be brief and well planned so that they do not interfere with
development and delivery schedules. Meetings may be feedback sessions for the purpose of
verifying preliminary data analysis, interviews to gather additional project characteristics data or
subjective information, or training sessions to reinforce the proper use of specific processes being
applied by the developers.

SIn most organizations, the managers of the development organization will continue to be responsible for
collecting and applying certain data needed for ongoing program management activities without impact from the
analysts. Some data collected in support of earned value analysis or planned versus actual budget information,
for example, will continue to be collected and analyzed by managers and their project control support personnel.
The role of the measurement analysts is to provide accurate models and relationships to support those
management activities.

53 SEL-94-002

5.1.2 Participating in Studies

The analysts may ask the developers and maintainers to participate in the experimental use of
some process, technique, tool, or model that is not part of the organization’s standard practice.
Such studies sometimes necessitate the use of new forms and typically require that development
and maintenance personnel attend briefings or a training session on using the new process.

Most projects experience little, if any, process change driven by the analysts. For these projects,
training is typically limited to discussions of new forms and new data reporting agreements. For
projects that undergo significant process changes, however, training sessions are important to
ensure that development and maintenance personnel thoroughly understand the new process and
fully agree that the study supports the organizational goals. The study must be a cooperative team
effort: analysts must provide regular feedback of interim results, and developers or maiztiiners
must contribute their insight regarding the value and relevance of those results.

When development and maintenance personnel participate in such studies, they should always
receive feedback from the analysts. At feedback sessions, developers and maintainers also have an
opportunity to report their impressions of the degree of success derived from the innovation and
to discuss any difficulties experienced in applying the new process.
5.2 Technical Support
The primary operational responsibilities of the technical support personnel are

e Collecting data

e Storing and quality assuring data

e Summarizing and reporting data

5.2.1 Collecting Data

Satisfactory collection of data by the technical support component depends on a clearly
established interface with the development and maintenance component and on clearly defined
terms and concepts provided by the analysis and packaging component.

Although many organizations put a great deal of effort into automating data coliection, many
years of experience have led to the following rule:

Do not expect to automate data collection.

Attemots to automate the data collection process shouid be limited. Because ruutine, manual data
collection efforts add an overhead of only 1 to 2 percent (see Reference i3), automation may not
result in a cost saving. In practice, extensive efforts to develop automated tools may actually
increase cost to the total organization. It is more important to ensure that the amount of data is
driven by specific organizational goals (which will also minimize the amount required) and that
the data collection process is well defined and operationally smooth.

SEL-94-002 54

Regardless of the size of the automated data collection effort, it is essential that management
communicate with the developers and maintainers about which parts of the process will be
monitored electronically.

Interface With Data Providers

Technical support personnel must ensure that members of the management and technical staffs
within the development and maintenance component understand their responsibilities with respect
to furnishing the selected project measures. Technical support personnel must also communicate
with the providers of the data to ensure that everyone understands the details of the collection
requirements, for example,

e Which personnel are responsible for collecting and furnishing project measures
e How frequently tie collection will occur
e Which portions of the software life cycle will be reflected in the data

e What type of personnel (management, technical, or administrative) will be included in
level-of-effort measurements

Make providing data easy.

Personnel within the technical support component must make furnishing data as painless as
possible for development and maintenance personnel to reduce the chances for aggravation and
resentment on the part of those data providers. Publishing a list of technical support contacts can
make it easy for the data providers to ask questions or deal with measurem.nt problems. Making
it obvious where to deposit the data forms and collecting them promptly to emphasize the
importance of providing the forms on schedule are also useful tactics.

Definitions

To ensure that the data provided are based on a consistent understanding of the measurement
terms and concepts, support personnel must supply concise, clear definitions to the development
and mainter.ance personnel. It is the responsibility of the analysis and packaging component to
write definitions that are consistent with organizational goals and locally understood ideas;
however, the data collectors are responsible for furnishing the definitions to the data providers.
The importance of focusing locally, rather than adhering to arbitrary industry-wide conventions,
cannot be overemphasized.

55 SEL-94-002

5.2.2 Storing and Quality Assuring Data

The seccnd important responsibility of the technical support component is storage of high-quality
data. For project data to be used effectively in support of the goals of a measurement program,
they must be complete and accurate as defined by QA procedures and readily available.

Data Storage

To be readily available, project data must be stored in an online database. This requirement leads
to the next rule:

Use commercially available tools.

Using a COTS DBMS to support the organization’s measurement program is highly
recommended. The time and effort required to develop custom tools will outweigh their benefits.
A relational DBMS will provide the most appropriate support for data retrieval and analysis using
a variety of table combinations and user views. Spreadsheets, indexed sequential files, and even
networked or hierarchical DBMSs are simply inadequate. See Reference 19 for a detailed
description of a mature measurement database using a commercial DBMS.

Data Quality

The quality of the stored data must also be considered. From the perspective of the support
component, data quality assurance is a two-step process:

1. Verification of source data—Discrepancies must be tracked to the source and corrected.
This step includes checking that the

a. Data forms have been submitted and are complete (i.e., all required values are
provided).

b. Values are of the specified type (e.g., numeric fields do not contain non-numeric
values).

c. Values are within specified ranges (e.g., the number of hours of effort per day per
person is never greater than 24).

d. Values are reported on the prescribed schedule.

2. Verification of data in the database—After the values have been entered into the
database, a second check is performed to verify that the entries match the source value.

An organization with a mature measurement program may be able to use automated tools that
allow developers to enter data directly into the database via online forms, thereby eliminating
paper forms and the manual QA process. Although this approach may seem ideal, experience has
shown that it often leads to unreliable data and that the cost of a manual process is relatively
small.

SEL-94-002 56

Despite the quality assurance steps, the next rule still applies:

Expect measurement data to be flawed, inexact, and inconsistent.

The collection and verification processes are fallible, and some data will be incomplete and
imperfect. A third quality assurance step, beyond the scope of the support personnel, will
subsequently be performed by the analysts to determine the accuracy and usefulness of the data.
The analysts will perform cross-checking, back tracking, and general qualitative analysis on
the data.

5.2.3 Summarizing, Reporting, and Exporting Data

Technical support personnel are also responsible for producing and distributing reports and data
summaries to data users in all three measurement program components. Occasionally, they are
also responsible for exporting raw data to external organizations. Reports can be tabular or
graphical, printed or displayed. Summary reports are designed to highlight particular trends or
relationships.

Not all reports are generated by the support personnel, however. High-level data analysis reports,
prepared by the analysis and packaging component, are discussed in the next section. Routine
management reports of project control information remain the responsibility of management.

Many of the raw data and summary reports are generated on a regular schedule. These reports
range from single-project summaries focused on a particular data type to multiple-project roll-ups
that provide high-level statistics in a format compact enough to facilitate project-to-project
comparisons. Support personnel distribute those reports to development and maintenance
personnel to provide feedback on project measures. Analysis and packaging personnel als 3 use the
reports to identify projects and data to be used in studies and model generation.

Figure 5-2 provides an example of a regularly scheduled Project Summary Statistics report,
showing actual data for projects in a NASA organization with a mature measurement program.
The report also contains several questionable entries (e.g., 0.0 hours for support where there
probably should be a positive value) and illustrates the rule that data may be flawed, inexact, or
inconsistent.

The technical support component also generates some of the raw data and summary reports on an
ad hoc busis, as requested by users of the data. Requests for specific data on specific projects
come from both the development and maintenance component and the analysis and packaging
component. Such reports also include low-level data dumps used by support personnel during the
data verification process.

A related responsibility of the support component is preparing measurement data for export to
another organization. Sharing data across domains anz interpreting data out of context are
normally not meaningful, as cautioned in the “focus locally” rule. Nevertheless, exporting data to
another organization occasionally makes sense. For example, the organization may intend to use
acquired data to support the establishment of its own measurement program. In addition to

57 SEL-94-002

Project Summary Statistics

9/13/93 07:23:39 Project Criteris : ALL

No. of Xo. of : Extensively Slightly ; Technical Support

Sub- Compo- = Total New Modified Modified old ; Ko. of & Mgmt Services
Projec: Status systems nents k SLOC SLC SLoc SLOC SL0C i Changes Hours Hours

!
:

PROJECTA IMACTIVE P9 32 15500 11800] [3706 3 2670 177i5.0 1774.0
PROJECTD INACTIVE H 224 16000 14100] 0 1900 ’ 213 5496.0 11.0
PROJECTC INACTIVE 2 178 ' 34902 34902 [} Q 0 : 413 l 7965.3 0.0
PROJECTD INACTIVE 2 415 41829 40202 450 1044 <38 544 32003.4 4407.6
PROCECTE INACTIVE 40 292 50911 45345 4673 893 1285 i25648.0 1109.0°
PROJECTT INACTIVE 20 397 61178 49712 3 1036¢ i102 i 221 17039.0 31056.0
PROCECTG INACTIVE e 76 8547 8041 0 €46 60 | 307 2285.¢ g.0
PROJECTH INACTIVE 1 494 . 01434 70981 0 0 10483 § 1776 17057.0 1875.0
PROCECLI IRACTIVE il 267 : 72412 55289 1879 f10¢ 11060 § 427 13214.6 1365.8
PROJECTS INMARCTIVE 14 930 } 178682 141084 16017 13647 7934 2 1494 49930.5 4312.9
PROJECTK IRACTIVE 4 322 5 36905 26986] 7363 2556 : 412 12005.0 1524.5
PROJECTL INACTIVE [244 ! 52817 45825 1342 1156 4494 % 344 6106.3 0.0
*PROJECTN INACTIVE 0 [} ‘ 0 0]] 0] ! 19208.9 3612.5
PROJECTN ACT_DEV Q [} (1] 0 ¢ [} 1] 0 ! 59.0 0.0
PROJECTO DISCORT Incompiete data for this project
PROJECT? IKACTIVE il 278 i 26844 24367 [2277 0 1177 § 10946.0 967.0
PROJECTQ ACT_DEV 9] H [0 [[]] , Q E 24662.2 3739.2
PROJECTR INACTIVE k14 3192 25731 25510 0 0 222 : 124 % 1514.0 0.0
PROJECTS ACT_DEV 0 [i 0 0 [} o 0 0 ‘ 0.0 0.0
® Prnjec:t data are not final

Figure 5-2. Project Summary Statistics

issuing a caveat about the danger of misinterpretation, support personnel must sanitize the data
before export to preserve the confidentiality of the data providers. Sanitizing the data requires
eliminating names of individuals and substituting generic project names for the mnemonics used to
identify projects within the local environment.
5.3 Analysis and Packaging
Analysis and packaging responsibilities consist of

e Designing studies

e Analyzing project data

o Packaging results

The analysis and packaging component has the heaviest burden within the measuremernt program.
The analysts must first design measurement studies to collect and analyze project data in support
of the organization’s process improvement goals. Next, they must use the data to develop and
maintain organizational models, such as cost estimation models and error profiles, and to

SEL-94-002 58

determine the impact of new technologies, such as object-oriented design or code reading, on the
orgamzation. Finally, they must provide the derived information to the project organization in a
useful form, such as guidebooks. tools, and trai ‘ng courses. The analysis and packaging effort
should always be transparent to the development and maintenance projects providing the data.
Developers have a right to vzderstand why they are providing the data. Moreover, a clear
understanding of the connection between the data they provide and the models and guidelines
produced by the analysts leads to higher quality project data and a higher degree of confidence in
the resulting products.

By analyzing and packaging measurement data, these personnel support the three reasons for
establishing a measurement program:

1. Understanding—Analysts use routine data from the core measures to build models and
relationships anri to characterize the overall software nrocesses and producis.

2. Managing—/Jthough the analysts do not play an active role in managing the software
developmem and maintenance projects, they provide information and models to the
development and maintenance personnel to improve the quality of project management.

3. Guiding improvement—Analysts consider each project an experiment, and the goals for
collecting specific measures are clearly defined in project experiment plans. These
experiments, which are actually studies of software engineering processes, can range in
scope from straightforward validation of the current organizational models to controlled
investigations of the impact of introducing a new methodology. Data from projects with
similar goals are analyzed and synthesized to produce models and to understand the
impact of process changes. Beneficial new technologies and organizational process and
product models are then packaged for use by the projects.

5.3.1 Designing Process Improvement Studies

On the basis of the overall goals of the organization and the characteristics of the individual
projects, the analysts, working with the project leaders, prepare plans that define specific study
goals and specify the data to be collected. Figure 5-~ provides an outline of a process study plan.
In some cases, analysts prepare detailed plans for projects participating in the measurement
program. In most cases, however, no significant changes will be proposed, and the study goals
will be primarily to refine the understanding of the software process or product; routine
measurement data will be sufficient, and no training will be needed. Many of the study plans will,
therefore, be relatively brief, containing simple descrintions of the data to be collected, the
analysis to be performed, and the study goals (e.g., “gain insight into the classes and origins of
software errors”).

Analysts must also prepare higher level organizational plans to coordinate the studies across
projects and to ensure that all high-priority organizational goals are being addressed. They work
closely with the organization’s managers to choose appropriate projects for major studies.

Appendix B includes a sample process study plan. The plan summarizes key characteristics of the
project, specifies study goals, identifies key questions to be answered by analyzing project data
and information, and clearly defines the data to be provided by the project.

59 SEL-94-3u2

Process Study Plan for
{Project Name}

{Plan Originator Name}
{Date}
1. Project Description
Briefly describe the application and the project team.
2. Key Facts

Briefly state the life-cycle methodology, methods, stiedule, project size,
implementation language, and any other important details.

3. Goals of the Study

Explain the goals of this study.

4. Approach

Describe the steps planned to accomplish the goals.

5. Data Collection

temize the measurement data and information to be collected during the study.

Figure 5-3. Process Study Plan Outline

A key reason for a study is to assess and guide change. Any change, such as ingoducing a new
method, tool, or language, may involve an element of risk, so any significant caange to a standard
development or maintenance process must be jointly approved by the analysts and the project
manager. When asked by the analysts to introduce evolving technologies on a project, a manager
must consider the risk, use commor sense, be cautious, and even refuse the change if the risk is
too great. Nevertheless, process studies are important to every organization, and each
development or maintenance project is expected to add some amount of process information to
the organization’s experience base.

Just as the organization’s high-level measurement plans must relate to its overall goals, a process
study plan for a project (or for a related set of projects) must show a clear connection between
the data being collected and the goals of the study. The sample plan in Appendix B was developed
for an ongoing project within an organization that already had developed a high-level plan. It
includes a high-level description of the approach for analyzing the project information and defines
a study intended to support new organizational goals.

5.3.2 Analyzing Project Data

The analysts continually synthesize data from many projects to gain an understanding of both the
product and process characteristics of the orgamization. They look for distinguishing project
characteristics that identify subgroups within the organization—for example, sll projects using the
Ada language or all projects applying object-oriented requirements analysis and design methods.
That effort results in a baseline set of process and product models for the organization and may
reveal changes (to models and relationships) that are not the result of explicitly introducing new

SEL-94-002 60

processes. Baseline analysis is a major effort, and it is a critical prerequisitc for any analysis or
packaging of the results of individual project studies. Experience has shown that the baseline
characteristics change slowly, even with the infusion of new processes. Therefore, packagers
generate new handbooks and guidebooks only every 3 to 5 years.

Analysts also examine individual prcject data to determine how trends co.. clate with project
successes and difficulties. They design the content of the high-level analysis re, .ts and work with
technical support personnel to establish the frequency for producing and distributing reports.
These reports generally provide high-level summaries of project characteristics or support specific
study objectives. Figure 5-4 provides an example of a high-level development project summary
report. Figure 5-5 shows a similar report for a maintenance project.

Once the crganization’s processes and products have been characterized, the analysts shift their
focus to assessing the impact of change. They compare current project measures with the
organization’s historical models to measure the impact of evolutionary changes introduced by
either explicit changes to the software processes (such as a new method or tool) or external
influences (such as changing the problem complexity). This analysis results in updated process,
product, or management models.

Analysts also focus on determining the impact of new technologies and approaches introduced in
major experiments. They compare experimental data with the historical baseline models to assess
success or failure. Often the resuit indicates a guarded success, suggesting that continued study is
needed to refine the technique and confirm success.

Figure 5-6 shows the results of a study designed to determine the impact on the distribution of
effort across software activities and life-cycle phases when the Ada programming language was
intrcduced into an organization that had previously relied on FORTRAN. Aft_r the organization
had gained the experience of using Ada on nine projects, the models stabilized as shown in the
figure (see Reference 10).

Although analysts use objective measurement extensively, they also depend heavily on subjective
information gathered directly from project personnel and recorded in project history reports to
help interpret the data. Each project has a unique set of drivers and circumstances that must be
considered when interpreting the data. Chapter 6 addresses the analysis, application, and feedback
of 1neasurement information in more detail.

5.3.3 Packaging the Results

As analysts gain greater insight into the characteristics of the current software development and
maintenance environment and the impacts of specific software methodologies on that
environment, they must infuse that understanding back into the development organization,
packaging the appropriate software practices for the problem domain in well-founded standards
and policies so that they can be applied on ensuing projects. Packaging entaiis generating the
following items:

¢ 3oftware management policies and guidelines

o Software development and mainten~nce standards

61 SEL-94-002

Data Summary for Project X

LINES DF COLE
no date Devainped. 73047
b b Dolhwarart. #1434
pigiee Heow 70851
DysaS Fourpd: ARS
100G Mnlitiod: OGP e (s WDLOC:
1211880 LPU use rate ({0PU bowsMILOG, 0

Effort by Calendar Phase

Acceplance

adt m e A Code/Test

LB T [JS v 41%
Change History Effort by Activity

i Yo o sin iy i
Bt o s

I 2 SR I SR LAy
Beserewn ok Ervincy

Error Source

Provious Reguremaents
Change oo 3% Functonal
9%

intemal Interlace
Extemal nprtace 19%
8%

Figure 5-4. High-Levsi Development Project Summaery Report

SEL-94-002 62

Data Summary for Maintenanc? Project X

CHARACTERISTICS PHASE DATES

Project naow: X g dule
Prinary iy, fals g 1RERT
Tagreant phase. Mapnmyoe Y bd ey
Cevloprrent compuer. WAX - WEES
Composmnis: 484 : NS
Charges. 574 Shmnmerance: 1A5EG
Ervors: 378

Tosl wHor 17,057 bewrs

Effort by Activity Number of Changes

Addapiabion

Lines of Code

Crprged e Salopd

Figure 5-5. High-Leval Maihtenance Project Summary Report

SEL-94-002

3%

Ettort Distribation by Activily
{Determined by Dete) {Dwterrriosd by Prograemene: Beporiy)

Figure 5-6. impact of Ada on Effort Distribution

Software training
Tools and automated aids
Reports of process studies

* Updates of packaged materials

Software Management Policies and Guidelines

Much of the information that has been collected and synthesized by the analysis component is fed
back into the organ zation in the form of models, planning aids, and guidelines. When packaged
into weli-designed policies and guidebooks, this information can improve a manager’s ability to
plan a software project, monitor its progress, and ensure the quality of its products.

Management policies and guidelines provide the local scheduling, staffing. and cost estimation
models that are needed for initial project planning as well as for re-estimation during the life of the
project. NASA's Manager's Handbook for Software Development (Reference 10) contains
guidelines and examples for using numerous models, such as

s Relationships relating effort to system size
¢ Effort and sche-ule distributions by phase
» Suaffing profiles

s Productivity relationships

SEL-94-002

The key models used for gauging project progress and quality are organized and packaged
together, preferably with the planning models, in a single reference source. Typical progress
models include local profiles of software growth, computer use, and test completion. Quality
models include error rates, reported and corrected software discrepancies, and software change
rates. Figure 5-7 shows an example of an error rate model used to predict and track errors
throughout the life cycle. The model was calibrated by measuring the error characteristics of over
25 projects with more thar. 5,000 errors reported. It depicts the typical rate of finding errors in
code (four errors per KSLOC), during the system test phase (two emrors per KSLOC), and during
acceptance testing (one error per KSLOC), a reduction of 50 percent in each subsequent phase.
Because no data were collected during the design phase, the error rate is zero. The vanation was
also computed, as shown in the figure. An actual ermor rate above the bounds of the model may be
the result of misinterpreted requirements or may be caused by highly unreliable or cemplex
software. An actual rate below the bounids may be the result of particularly well-built software, a
relatively simpie problem, or inadequate testing.

Every organization can and should produce a document containing the complete set of models,
relationships, and management guidelines used within the organization. (See Reference 8 for an
example of such a document.)

System Acceptance

Design Code/Test Test Test

! | i

7] '
Expected Range i
6 - Histoncal Nom == :
|
5 4 i
!

Errors per KSLOC

w
I
- e D D 90 GEb an v em evy sum e

Schedule

Figure 5-7. Ssmple Error Rate Mode!

Software Development and Maintenance Standards

In a mature measurement program, standards for software development and maintenance address
each phase of the software life cycle, covering the entire range of technical activities. These
standards define the products, methods, tools, data collection procedures, and certification criteria

65 SEL-94-002

that have been identified as beneficial to the organization. Separate, detailed standards
characterize programming practices unique to the local eavironment or to a specific development
language; they also address specialized techniques, such as the Cleanroom method or object-
oriented design.

The most useful, high-quality software engineering standards are derived from the practices of the
organization for which they are intended; that is, they are measurement driven. A standard
requiring the use of processes that are incompatible with the organization’s development and
maintenance methodology cannot be successful.

Software Training

The organization’s goals, environment, and measured experiences must drive the planning and
execution of the training c.miculum. Courses reflect the understanding of the characteristics of
the local environment, and each course must respond *~ a specific need.

Training becomes essential when new technologies, standards, tools, or processes are in‘used into
the software engineering environment. Personnel are more likely to accept a new approich when
it has been introduced in well-organized stages within the interactive setting of a trainirg course.

Training must be provided first to those who are panicipating in an experiment with a new
technology and then to a wider audience as soon as the technology has been adopted for general
use within the organization. A training program should also include courses that introduce new
persennel to the software dcvelopment and maintenance environment.

Tools and Automated Aids

Packaging personnel also build tools and other automated aids to facilitate software management,
development, maintenance, or data collection processes. Such tools include

e Cost estimation aids based on local models
e Management aids that compare actual measured values with baseline estimates
o Design aids that are driven by experimental results indicating beneficial design approaches

In addition, more sophisticated tools may use the organization’s extensive historical informzation
for managing and for analysis. An example of such a tool is the Software Management
Environment (SME) (Reference 20). It encapsulates experience (i.e., data, research results, and
management knowledge) gained from past development projects in a practical tool designed to
assist current software development managers in their day-to-day management and planning
activities. The SME provides integrated graphical features that enable a manager to predict
characteristics such as milestones, cost, and reliability; track software project parameters;
compare the values of the parameters to past projects; analyze the differences between current
and expected development patterns within the environment; and assess the overall quality of the
project’s development progress. Figure 5-8 illustrates the architecture and typical uses of such a
tool.

SEL-94-002 66

PREDICT)
3 $
‘g Curent Size Final System
» Size
&
L '] p_J
Code'Tess System Test Acceptance Test
¢ {
2 Fnal Error,
- Rate
2
g Current Emor
SEL Database O s ,Rae —_
* Past projectdata = CodeTest SysemTest Acceptance Test
* Product estmates Time
—— ANALYZE
Cﬁ ' == Cumment Project
Current Data _’

o Project charac- f=———=tpp SME 5 Model
tanstcs 3
. N s Errors below normal
Project error data r" S ebicigtag
é © inaulhicent testng
Cﬁ = © Expanenced eam
Nidslsand I = ® Problem less dffcult
/ thar: expected
Measures)
. P"m - Fule Base CodoTest End Estmated
pe) * Rules of software Time
. ns of key development
pardmetprs * Problem and = T
« Models and rela- project charac- ASSESS ppject Assessment
oneiips tenistics : Above
* Rules for eval-
uating quakty
Nommnal
Below
. R NN RN
Retabidy Mamtainabity Quaity
Figure 5-8. SME Architecture and Use
Reports of Process Studies

For each process study, analysts prepare one or more reports that address the goal, the specific
questions to be answered, the methods employed, the results measured, and the conclusions
drawn. Interim reports document partial results during lengthy or ongoing studies, and final
reports are prepared immediately after the study is completed.

67 SEL-94-002

Final reports are vital sources of information when the time comes to integrate study
recommendations with other standard practices before packaging them as policies, guidebooks,
courses, or tools. An organization may, therefore, find it helpful to collect all study reports
produced within a year into a single annual reference volume.

Some organizations repackage study reports for distribution outside the local environment as
conference papers and presentations, thus gaining valuable feedback by subjecting the results to
peer review. Such scrutiny can offer comparisons, suggest other interpretations or conclusions,
and help improve the data collection procedures and analytical methods employed by the
organization.

Updates of Packaged Materials

All packaged materials—policies, standards, course materials, tools, and study reports—must be
maintained in an organizational repository. Together with the information in the measurement
database, the repository of packaged materials functions as the memory of the organization. It is
essential that the contents of the library be catalogued and that the catalog be kept up-to-date as
new material is added. In the SEL, for example, a bibliography containing abstracts of all SEL
documents is revised and republished annually.

The analysis and packaging component also updates guidebooks, training courses, policies, and
tools on a regular basis to keep the organization abreast of current software engineerin: practices.

SEL-94-002 68

Chapter 6. Analysis, Application, and Feecdback

I Chapter Highlights |

T - T UNDERSTANDING

Software attributes
Cost characteristics
Error characteristics

Project dynamics

MANAGING

¢ Planning
e Assessing progress
e Evaluating processes

GUIDING IMPROVEMENT

¢ Measuring process impact
+ Adapting process to local environment
+ Eliminating processes with little value

69 SEL-94-002

Software measurement programs must focus on the use of data rather than on their

collection. Thus, the approach to using measurement data must be clearly defined, and
the data must be analyzed and packaged in a suitable form. The effective use of measurement data
is an outgrowth of the planning exercise that establishes the organization’s goals, which drive the
measurement activities.

T his chapter describes specific approachss for using measurement information effectively.

The following scctions address the analysis, application, and feedback of measurement
information in the context of the three key reasons for establishing a measurement program, as
discussed in Chapter 2:

1. Understanding
2. Managing
3. Guiding improvement

Examples drawn from experiences within NASA illustrate the important points. Because each
organization’s measurement goals may diffcr, the examples presented here may not relate directly
to the nceds of other organizations.

6.1 Understanding

The first reason for measurement—understanding—includes generating models of software
enginecring processes and the relationships among the process parameters. As an organization
builds more models and relationships and refines them to improve their accuracy and reliability, its
personnel develop more insight into the characteristics of the software processes and products.

True understanding requires qualitative analysis of objective and subjective measurement
information, including examination for accuracy and checks for flawed, missing, or inconsistent
data values. If used properly, subjective information is as valuable as objective counts. Unlike
objective data, which are used in statistical analysis, subjective information reflects the experience
of managers and developers within the organization’s local environment. The resulting models and
relationships, whether derived from objective or subjective informaticn, are relevant only within
the local environment.

The understi..u.ng process includes the following major measurement applications:
e Software attributes
e Cost characteristics
e Error characteristics
e Project dynamics

Increased understanding provides the foundation for building models and relationships and for
developing the key infonnation required for managing subsequent software development efforts.

The examples in this section depict various measurement applications that have proven beneficial
to experienced me~surement organizations. All of the models can be developed from the core
measures described in Chapter 4. The example descriptions are by no means exhaustive.

SEL-94-002 70

Finding the answers to the questions posed in Table 6-1 is an essential activity in applying
measurement. Any software organization will benefit from analyzing the fundamental information
shown in the examples that appear throughout the rest of the chapter.

Table 6-1. Questions Leading to Understanding

Measurement
Application Understanding Examples
Software What languages are used, and how is the use evolving? 1
Attributes What are the system sizes, reuse levels, and module profiles? 2
Cost What is the typical cost to develop my software? 3
Characteristics | what percentages of my software resources are consumed in the 4
various life-cycle phases and activities?
How much is spent on maintenance, QA, CM, management, and 5
documentation?
Error What are the error rates during development and maintenance? 6
Characteristics | what types of errors are most prevalent? 7
How do size and complexity affect error rates? 8
Project What is the expected rate of requirements changes during 9
Dynamics development?
How fast does code grow during development, and how fast does it
change?

6.1.1 Software Attributes

Information about software attributes is easy to record and use but is toc often overlooked. At a
minimum, organizations should record the sizes, dates, and languages used on every project.
Those basic characteristics are necessary for developing cost models, planning aids, and general
management principles. Table 6-2 shows a subset of the actual data used in calculating the
information shown in the examples that follow. For a more complete listing of the data, see

Reference 9.
Exrmple 1:
Language Evolution
Goal: Determine the language usage trend.
Measures needed: Project dates, sizes, and languages.
(See Sections 4.3 and 4.5.)
71 SEL-94-002

Table 6-2. Sofitware Attribute Data

Development New Reused
Project Language Period SLOC SLOC Effort
ISEEB FORTRAN 10/76-09/77 43,955 11,282 15,262
SEASAT FORTRAN 04/77-04/78 49,316 26,077 14,508
DEA FORTRAN 09/79-06/81 45,004 22,321 19,475
ERBS FORTRAN 05/8°:-04/84 137,739 21,402 49,476
GROAGSS FORTRAN 08/85-03/89 204,151 32,242 54,755
GROSIM FORTRAN 08/85-08/87 31,775 7,175 1,146
COBSIM FORTRAN 01/86-08/87 47,167 5,650 49,931
GOADA Ada 06/87-04/90 122,303 48,799 28,056
GOFOR FORTRAN 06/87-09/89 25,042 12,001 12,804
GOESAGGS FORTRAN 08/87-11/89 113,211 15,648 37,806
GOESIM Ada 09/87-07/89 65,567 26,528 13,658
UARSAGSS FORTRAN 11/87-09/90 269,722 33,404 89,514
ACME FORTRAN 01/88-09/30 B 34,902 c 7,965
UARSTELS Ada 02/88-12/89 i 44,441 23,707 11,526
EUVEAGSS FORTRAN 10/88-09/90 55,149 193,860 21,658
EUVETELS Ada 10/88—-05/90 2,632 64,164 4,727
EUVEDSIM Ada 10/88-09/90 57,107 126,910 20,775
SAMPEXTS Ada 03/80-03/91 3,301 58,146 2,516
SAMPEX FORTRAN 03/90-11/91 12,221 142,288 4,598
SAMPEXTP FORTRAN 03/90-11/91 17,819 1,813 6,772
POWITS Ada 03/90-05/92 20,854 47,153 11,685
TOMSTELS Ada 04/92-09/93 1,768 50,527 6,915
FASTELS Ada 08/82-10/93 5,306 59,417 7,874
FASTAGSS FORTRAN 08/92-04/94 21,750 125,405 7,550
TOMSEP FORTRAN 05/93-04/9< 24,000 180,300 12,850
72

SEL-94-002

Language Usage Trend
Data recorded at NASA to track language usage on projects have provided insight into
the trends within the organization and have led to better planning for programmer training.

Figure 6-1 compares the language usage on projects completed before 1992 (and currently
in maintenance) with those in development after 1992 (see Reference 21).¢

GSFC Software

FORTRAN
<35%
FORTHAN
62%

Currently Under Maintenance Currently in Development

Figure 6-1. Language Usage Trend

Example 2*
Product Profiles

Goal: Determine the levels and trends of code reuse in projects.

Measures needed: Project dates, sizes, and percentages of reuse.
Total effort on each project.
(See Section 4.5.)

The characteristics of the source code itself can provide useful information about software
projects. Too ofien this basic information, which is required to develop effective cost and
planning models, is neither archived nor used effectively. Relatively simple historical
models can be useful for managing and gu.ding improvements on projects. The
information includes the typical size of projects and components; models of reused code;
and profiles of source code distributions among commentary, data definitions, and
executable code.

6The percentages shown in the figure are derived from data collected from over 75 projects covering a span of 10
years. Table 6-2 represents only a small sample of those data.

73 SEL-94-002

Code Reuse Trend

Figure 6-2 shows trends derived from 11 FORTRAN and 8 Ada projects. The models
were initially produced in 1989 for the early projects; more recent projects reflect a
significantly higher percentage of reuse.

The basic source code information is needed not only vor tracking changes in the code
reuse level over time but, more importantly, for determining cssential cost models for the
local environment. The following section discusses how to derive cost-impact models of

reuse.
& 2
90 - g .3 £ £3
3 e £3 P
3 80‘ © o~ v‘eu.
o £
70 - s
@ SRR
g 60+ O
(&] 50 4 N
5 g NN
o 404 £5 N
= 5 0 = @ &0 7 \\\\\
234 2 8.3 3 2 BN a
S g 228 3.3 |2 b 3
o 104 A\ 1 ;l QN 2
0 AN - '
Early FORTRAN FORTRAN Projects
Baseline (1986—1988) Since 1989
)] pid E
s 2 E 2 ©
® w
100 282 g3 EE 22
90 - 8
b 80 2
S N 2
z
€ 70 g
2 60-
S g F o
s w04 £ Z3E
2 34 L8
8 o0-
E
10 §
0 A . L
Early Ada Ada Projects
Baseline (1986—-1538) Since 1989

Fligure 6-2. Code Reuse Trend

SEL-94-002 74

6.1.2 Cost Characteristics

Software cost characteristics are probably the most important set of attributes that contribute to
an understanding of software. Cost characteristics include productivity, cost of phases, cost of
activities, cost of changes, and many other attributes required for managing, planning, and
monitoring software development and maintenance.

Example 3:
Cost Versus Size

Goals: Evaluate the cost of reusing code.

Determine the cost of producing code in the organization.
Measures needed: Project size, dates, reuse, and effort data.

(See Section 4.5.)

Cost of Reusing Code

Simple measures can be used to derive a local model for the cost of producing software.
One major factor that must be analyzed is the impact of code reuse on cost. Borrowing
code written for an earlier software project and adapting it for the curren. project usually
reyuires less effort than writing entirely new code. Testing reused code also typically
requires less effort, because most software errors in reused code have already been
eliminated. Software projects using a significant amount of reused code usually require
less overall effort than do projects with all code written frc ~ cratch.

Chapter 2 introduced the following relationship among the values of effort (cost of
personnel), DLOC, and productivity:

Effort (in hours) = DLOC / Productivity
where

DLOC = New SLOC + Reuse Cost Factor X Reused SLOC

The reuse cost factor is a weighting factor applied to reused source code. Several
simplifying assumptions can be made to compute an approximate value for this factor. The
most significant assumption is that all similar projects reflect approximately the same
productivity; hence, the only variable is the cost of reuse. In this case, the similarity of the
projects comes from their having been developed within the same environment and in the
same language (FORTRAN). Although numerous other factors affect the cost of
development, it is best to apply simple measures to arrive at an approximation before
attempting detailed analysis of more complex factors.

75 SEL-94-002

Points derived from values in Table 6-2 can be plotted to illustrate the relationship
between lines of code per hour and the reuse percentage as shown in Figure 6-3.
Assuming that productivity (DLOC/Effort) is constant, the straight line fit to the DLOC
points indicates ihat 20 percent is a reasonable approximation for the reuse cost factor for
FORTRAN.

I o

15 - O Total Source Lines o

® Developed Source Lines
(20% Reuse Cost Factor)

Produchvity (Lines per Hour)

1

% Reuse

Figure 6-3. Derivation of 20 Percent Reuse Cost ractor for FORTRAN

Figur. 6-4 shows a slightly different approach for Ada language projects. Analysts within
the same environment studied size, effort, and reuse data from five projects developed
between 1987 and 1990 to derive the Ada reuse cost factor. Attempting to produce a
constant productivity value, they computed the productivity as DLOC ver hour for each of
the five projects whit: varyinc whe reuse cost factors. In this case, the 30 percent factor
resulted in the lov.est standard deviation for the computed productivity values and was
acopted for this organization.

Every organization can develop its own reuse cost factor with the simple measures listed
in Tuble 6-2.

Cost of Producing Code

One of the most basic aspects of software engineering understanding is the ability to
model the cost of a system on th. basis of size or functinnality. Section 2.2 discussed the
basic estimation models, reiaungz cost to software size, which have proven useful in one
environment. Those models were derived by analyzing da‘*. from over 100 projects
spanning many years an- ' ; making careful decisions about which projects to "aclude in
the baseline model and which to exclude. Organizations just starting to apply measurement
shouuld begin to establish cost . odels vii' heir own data.

SiiL-93-002 7¢

Reuse Cost Factor (Standard Devistion)

2

£420% (0.655;
£125% (0.474}
& 30% (0.348)

4]

GLOC per Howr
¥ {73 S

S
&

o

GOADA GOESIM UARSTELR EUVETELE EUVEDSIM

Figure 6-4. Derivation of 30 Percent Reuse Cost Factor for Ada

Example 4:
Effort Distribution

Goals: Determine the relative cost of each life-cycle phase.
Determine the characteristics of staffing profiles.

Measures needed: Project phase dates, effort data, and developer activity data.
(See Sections 4.1 and 4.5.)

Cost of Life-Cycle Phases
An effort distribuiion can be modeled in two ways:

1. By phase, to determine which phases of the life cycle consume what portion of the
total effort

2. By activity, to determine what portion of effort is spent performing each defined
software engineering activity

Figure 6-5 shows those two distributions of effort for the sume set of development
projects. The model of effort by lifecycle phase represents hours charged to a particular
project during each phase as determined by the beginning and ending dates of the phases.
The model of effort by activity represent all hours attributed to a particular activity,
regardless of when in the life cycie it occurred. The four activities {design, code, test, and
other) are determined by local process definitions. The “other” category includes

SEL-94-0G2

supporting efforts such as managing, training, attending meetings, and preparing
documentation.

FORTRAN Projects

Arseptance Design Other
Test 20% / et A

Code
, Tost 21%
4%
Effor Distribution by Phase Effort Distribution by Activity
{Date Deperdent) {Not Date Dependent)

Figure 6-5. Effort Distribution Model

Staffing Profiles

Another use of effort data is to model the baseline staffing profile that reflecis the
development environment and the type of problem. In the SEL environment, where a
substantial portion of the detailed requirements is net known until mid-implementation, the
eapected model resembles a doubly convex curve instead of the traditional, widely used
Rayleigh curve {see Figure 6-6). The cause of this trend is not well understood, bt it
occurs repeatedly on flight dynamics projects in that environment. It is valuabie {or each
software organization to produce its own staffing profile rather than to rely on a generic
model that may have no relevance to the actual processes used at the iocal level.

/

&

ek

&
i

/

i

Figure 6-6. Slalling Protile Model

SEL-94-002

Example 5:
Cost of Major Activities

Goal: Build models of the cost of maintenance and other major
activities, such as documentation and guality assurance.

Measures needed: Developer activity data, effort, and software size.

(See Sections 4.1 and 4.5.)
Cost of Maintenance
Software maintenance includes three types of a:tivities accurring after the system is
delivered:

1. Correcting defects found during operatic al use
2. Making enhancements that improve or increase functionality

3. Adapting the software to changes in the operatioual environment, such as a new
operating system or compiler

The SEL environment has two major types of systems under maintenance: multiplc-
mission systems, which support many spacecraft and have a software lifetime of from 10
to 30 years, and single-mission support systems, which run as long as the spacecraft are
operational, typically from 2 to 7 years. Both types of systems are written primarily in
FORTRAN on mainframes and are roughly the some magnitude in size (100-250
KSLOC). A large percentage of the maintcnance effori is spent enhancing the system by
modifying and recertifying existing components. SEL. maintenance personnel add few new
components and produce little new documentation. Average annual maintenance cost
ranges from 1 to 23 percent of the total development cost of the original system.
Table 6-3 includes analysis of representative data from several SEL systems under
maintenance for at least 3 years. Some of the values are not available and some are
questionable; nevertheless, analysis provides useful insights into the cost of maintenance.

On the basis of the above analysis, and in censideration of the high variation among
systems, the SEL uses the conservative approach shown in Table 6-4 when estimating
maintenance costs.

A general model of the overall cost of the development and maintenance of soitware can
be of significant value for identifying more detailed breakdowns of cost by key activities.
The data from projects depicted in Table 6-2 are used to determine the cost of several key
activities.

79 SEL-94-002

Table 6 3. Analysis of Maintenance Effort Data

Yearly Maintenance Effort

Size Development History (Hours) % Effort
System Type | (SLOC) | Effort (Hours) 18t 2nd 3rd | Average per Year
COBEAGSS | S | 178682 49,931 57 0 0 19| o004
GROAGSS s | 236303 54,755 49| 370| 370 412 1
GOESAGSS | S | 128859 13,658 607| 159| 950 572| 4
EUVEAGSS | S | 249,000 21,658 757 | 358| 410 so8| 2
DCDR M | 75804 28,419 na| 4000 | 4000| 4000] 5
ADG M | 113455| 45800 | nia| 6000| 6000 6000 13
CFE M | 98021 30,452 wa| 2000 | 2000{ 2000| 2

NOTE: S = single mission system.
M = multiple mission system.

Table 6-4. Basis of Maintenance Costs Estimates

Estimated Annual Maintenance
Cost as a Percentage of Total
Project Type System Developmeiit Cost
Single-mission systems 5%
Multiple-mission systems 15%

Costs of Documentation, Quality Assurance, and Configuration Management

Th- osts of support activities such as documentation, QA, and CM are determined from
the clopment activity measures combined with the basic time reporting from the
supp' (organizations. These data are easy to collect in mest software organizations.
Figure €-7 shows the data collected from one large NASA organization. A)asic
understanding of the cost of these activities is essential so that any change or attempt to
plan for these efforts can be based on a solid foundation.

6.1.3 Error Characteristics

Understanding the characteristics of errors in the software products is just as important as
understanding the cost of prcducing and maintaining software. The nature ¢f software errors
includes the error frequency, the cost of removing errors, the severity o: the errors, the most
common causes of errors, and the processes most effective in identifying or preventing errors.

SEL-94-002 80

QA
4%

22

Documentation
11%

Analysis, Design,
Code, Test

Figure 6-7. Typical Allocation of Sofiware Project Resources

Example 6:
Error Rates

Goals: Determine the average rate of uncovering errors.
Determine which life-cycle phase« yield the most errors.
Compute the error rate in delivered software.

Measures nec.cd: Project size, phase dates, and reported errors.
(See sections 4.2 and 4.5.)

Error Rates by Phase

Figure 6-8 illus‘ 1tes a modcl of the number of renorted errors (normalized by the product
size) over the various phases of the life cycle. This model combines product and process
data .ad provides two types of information.

The first type is the absolute error rate expected in each phase. The rates shown here are
based on SEL development projects from the mid-1980s. The model predicts about four
errors per KSLOC during implement-tion, two during system testing, one during
acceptance testing, and one-half during operation and maintenance. Those error rates by
phase yield an overall average rate of seven crrors per KSILOC during development. An
analysis of more recent projects indicates that :rror rates are declining as improvements
are made in the software process and technology.

81 SEL-94-002

5 X
15 X
3 4 X
2 x x
g 37
b
o -
g 2 » x X b {

x x
19 X X X
x | X X

1
Coae/Test ' System Test 'cheptanceTest Operations

Figure 6-8. Error Detection Rate by Phase

The second piece of information is that error detection rates are halved in each subsequent
phase. In the SEL, this trend seems to be independent of the actual rate values, because
the 50 percent reduction by phase is holding true even as recent error rates have deciined.

Example 7:
Error Classes

Goal: Determine what types of errors occur most often.

Measures needed: Reported error information.
(See Section 4.2.)

Types of Eirors

Figure 6-9 depicts two models of error class distribution. The model on the left shows the
distribution of errors among five classes for a sample of projects implemented in
FORTRAN. A manager can use such a model (introduced in Section 2.2.1) to help focus
attention where it is most needed during reviews and inspections. In addition, this type of
baseline can show which rofiles seem to be consistent across differing project
characteristics, such as in the choice of development language.

The model on the right shows the distribution across the same classes of errors for Ada
projects in the same environment. Contrary to expectation, there is little differencc in the
error class profiles between the FORTRAN and Ada development efforts. One possitle
interpretation of this result is that the organization’s overall lifecycle methodology and
the experience of the people in that environment are stronger influences on process
profiles than any one specific technology.

SEL-94-002 82

8 FORTRAN Projects 5 Ada Projects

Computatonal intiatization Lampitational fribaiation
155) 15% 15%

Figure 6-8. Comparative Error Class Distributions

Example 8:
Errors Versus Size and Complexity

Goals: Determine if error rates increase as module size increases.

Determine if error rates increase as module complexity
increases.

Measures needed: Error reports by module, module size, and module
complexity.
(See Sections 4.2 and 4.5.)

Many measures proposed in the literature atternpt to model errors or effort as some
function of program or design complexity. Two of the most prevalent sets are Halstead's
software science measures and McCabe’s cyclomatic complexity number. A 1983 SEL
study (see Reference 22) examined the relative effectiveness of those measures and
simpler software size measures (SLOC) in identifying error-prone modules. A linear
analysis of various scatter plots using 412 modules failed o support the commonly held
belief that larger or more complex systems have higher error rates.

Figure 6-10 shows that error rates actually decreased as both size and complexity
increased for the large sample set in this environment.” However, more extensive analysis
revealed that this unexpected trend occurred for only the limited set of modules used in
the earlier study. When the sample size was increased. the trend reversed, suggesting that
it is wise 1o be cautious of drawing conclusions from lirnited analysis.

T Moduie complexity can be derived from as analysis of completed software.

83 SEL-94-002

0.0600 0.0600
0.0525 — 0.0525 —
Q 0.0450 — O 0.0450 =
S S
@ 0.0375 7 » 0.0375 -
@ - @ -
o 0.0300 — Q 0.0300 — -
e 2
2 0.0225 2 0.0225 .
w wo IR -
0.0150 — 00150 | T
0.0075 — 0.0075-] e el TN
1 | 0 | | I 1 1 "L I 1 1
15 45 75 105 135 165 195 100 o 500 790 900 1100 1300
McCabe Complexity SLOC

Figure 6-10. Cyclomatic Complexity and SLOC as Indicators of Errors (Preliminary Analysis)

6.1.4 Project Dynamics

An analysis of project dynamics data can give managers useful insight into changes to
requirements, to controlled components, and in the estimates to comgletion.

Example 9:
Growth Rate Dynamics
Goal: Derive a model that characterizes the local rate of cod
production.
Measures nec’ed: Phase dates and weekly count of completed code.
(See Section 4.4.)

The gron. th rate of the source code in the configuration-controlled library closely reflects
the completeness of the requircments product a.:d some aspects of the software process.
In the SEL enviruument, periods of sherp growth in SLOC are separat=d by pencus of
more moderate growth, as shown in Figure 6-11. This pheanomenon reflects the SEL
approach of imrlementing systems in multiple builds. The model also shows that, in
respon.¢ to requirements changes, 10 percent of the code is typically produced after the

start of system testing The uncertainty _and highligh s the typical variation expected with
this model.

SEL-94-002 84

System | Acceptance

Design Code/Test Test

B

% of Totat LOC

3\—

L I i l
40 S0

% of Schedule

4

N

8
8

10 20

8

Figure 6-11. Growth Rate Model

6.2 Managing

The management activities of planning, estimating, tracking, and validating mc “=ls, introduced in
Section 2.2, all require insight into the characteristics of the organization’s software engineering
environment and processes. Measurement data extracted during the development and maintenance
phases will provide quantitative insight into whether a project is progressing as expected.

An analysis of the following types of measurement information can lead to better management
decision making:

e Planned versus actual values. Tracking ongoing progress requires not only the actual data
but also planning data based on estimates from local models. Candidates for such analysis
include effort, errors, software changes, software size, and software growth.

e (onvergence of estimates. A manager should expect to revise estimates periodicaily. The
frequency of revisions can be based on the pattern of the data being tracked. If the acwals
are deviating from the current plan, more frequent updates are needed. The estimates
themselves should eventually converge and not vary wildly from one estimate to another.

e Error history and classes of errors. An analysis of error data can pinpoint problems in the
quality of development or maintenance processes. Possible focus areas include design or
code inspections, training, and requirements management. Data from relatively few
projects can be effectively used in this manner.

85 SEL-94-002

An effective measurement program enhances tnanagement activities:

e Planning. Historical information, along with estimates of the current project, enable the
manager to prepare schedules, budgets, and implementation strategies.

e Assessing progress. Measures indicate whether projected schedules, cost, and quality will
be met and also show whether changes are required.

e Evaluating processes. The manager needs insight into whether a selected software
engineering process is being applied correctly and how it is manifested in the final product.

Using the information gained from tracking software measures, managers have numerous options
for addressing possible progress or quality problems. Those options include adjusting staff, adding
resources, changing nrocesses, replanning, and enforcing a process, among others. Table 6-5 lists
the examples presented in this section, which are derived from actual data on NASA software
projects.

Table 6-5. Questions Supporting Management Activities

Measurement
Application Managing Examples
Planning What is my basis for estimating cost, schedule, and effort? 10
What is imy basis for projecting code growth and change? What is 1"
my organization’s model of expected error rate?
Assessing Is my project development proceeding as expected? 12
Progress How stablie are the requirements an. design? 13
Is my original staffing estimate on track? 14
Are we correcting defects faster than they are detected? When will 15
testing be complete?
Are we producing high-quality and reliable software? 16
h—
Evaluating Are our standard processes being applied properly? Are they having 17
Processe: the expected effects?

6.2.1 Planning

A software manager’s major responsibilities include effective planning at the start of a project.
The manager must estimate cost, schedules, and effort; define the processes; and initiate a
mechanism for tracking against the plan. The major application of measurement information for
the planning phase is to make use of the derived models, relationships, and insights gained from
measurement understanding efforts.

SEL-94-002 86

Example 10:
Projected Cost, Scheduling, and Phases

Goal: Estimate cost, schedule, effor, and errors.
Measures needed: Project size estimate, models, and relationships.
(See Sections 2.2, 6.1.2, and 6.1.3.)

Although estimating the size of a new project is not easy, most organizations have an
approach for producing a reasonable size estimate in SLOC. Once that size estimate has
been calculated, the derived models for cost, schedule, effort, and other project
characteristics can be used in the planning phase. The models described in Section 6.1 are
used to derive more detailed estimates of a project based on the siz: estimate. The
following example depicts the planning for an AGSS project whose initial size estimate is
150 KSLOC of FORTRAN code, of which 90 KSLOC is estimated to be new and 60
KSLOC is estimated to be reused from other systems.

The manager computes DLUC as

DLOC = New SLOC + (Reuse Cost Factor x Reused SLOC)
= 90K + (0.2 x 60K)
=102K

Using a productivity rate of 3.2 DLOC per hour (see Chapter 2)

Effort = DLOC / Productivity
=102 KDLOC/ (3.2 DLOC per hour)
= 31,875 hours
=206 months

The manager next distributes the effort across the life-cycle phases (see Table 6-6) using
the percentages shown in Figure 6-5 and estimates the duration of the development using
the relationship introduced in Chapter 2:
Duration = 4.9(Effort)®*
=4.9(206 months)®
= 24.2 months
Figure 6-8 tells the manager to estimate 7 errors per KSLOC during development; for 150

KSLOC, the estimate is 1,050 errors distributed as shown in Table 6-6, with 75 additional
errors estimated to be detected in the operational system.

87 SEL-94-002

Table 6-6. Project Planning Estimates

Activity Estimate
Development Effort
Design (30%) 62 staff-months
Code/unit test (34%) 70 staff-months
System test (16%) 33 staff-months
Acceptance test (20%) 41 staff-months
Total 206 staff-months
Duration 24.2 months
Errors
Code/unit test 600 errors
System test 300 errors
Acceptance test 150 errors
Total development 1,050 errors
Errors
Operations 75 errors
Annual maintenance effort 31 staff-months
Documentation effort 23 staff-menths

Assuming that the system is intended to support multiple missions, the estimated annual
maintenance effort (derived from Table 6-4) is 31 staff-months.

Finally, the cost of support activities can be derived from Figure 6-7. Table 6-6 shows the
estimated cost of the documentation effort.

Examnle 11:
Project Dynamics
Goal: Determine the expected growth rate. change rate, and error
rate of source code.
Measures needed: Project size estimate, models, and relationships.
(See Sections 2.1 and 6.1.)

The project manager introduced in the previous example can use models derived from
historical data to project the expected rate of source code growth, as well as the expected
change rate and error rates of the software. Each new project will always strive to attain
lower error rates; however, uniil those lower rates are packaged into new organizational

SEL-94-002 88

models, the manager should use the current historical models. Figure 6-12 illustrates the
planning charts derived from the models discussed in Section 6.1.

Growth Rate Change Rate
-m 1 ACCE System [Acceptan
Design Code/Test :;;tm Tg:anoe Dasign Code/Test Test est ceF
150 ——
135 - / 12004
120 1.050 -
105 900
8 90 - gx 750
9 8
75 — £ .
‘Q S 600
60 - 450 -
% 300
30
150 -
15 =
[\} —d z ol TN T B O l
N ey «arfil BETEE BT I N EETV Y 10 20 30 4 S0 60 70 80 90 100
1 20 30 40 S0 6 70 8 9% 100 % of Schedule
% of Schedule
Emor Detection Rate
800
750 4
g 600
14
1 450 4
mo- |
1501 __l___l_
0 — { |

LY

_—
CodelTest ' System Test AcoeptanoeTest' Operations

Figure 6-12. Planning Project Dynamics

Estimating the final software size is the most understood and useful basis for project
planning, and the basic historical models derived during the understanding stage of a
measurement program are the most important planning aids. As an organization completes
more detailed analyses of the local environment, additional models will provide even more
accurate planning Jata. Such parameters as problem complexity, team experience,
maturity of the development environment, schedule constraints, and many others are all
valid considerations during the planning activity. Until the measurement program provides
some guidance on the effect of such parameters, project planning should rely primarily on
lines of code estimates, alcng with che basic historical models.

6.2.2 Assessing Progress

A second important management responsibility is to assess the progress of the development and
maintenance ac..vity. Project managers must track the activities and interpret any deviations from
the historical models. Although experience is the best asset for carrying out this responsibility,

89 SEL-94-002

several measures are helpful. The standard earned-value systems, which aid in analyzing the rate
of resouices consumed compared to planned completed products, are effective for supporting
progress tracking. Along with earned-value techniques, other software measures can provide
additional insights into development progress.

Example 12:
Tracking Code Production
Goal: Determine whether developmenr! is progressing as expected.
Measures needed: Biweekly count of source library size, manager’s updated
at-completion estimates.
(See Section 4.4.)

An ar .tysis of historical data enables the derivation of such profiles as the expected rate of
code growth in the controlled library (see Figure 6-11). Using such a model, a project
manager can determine whether code production is proceeding normally or is deviating
from the expected range of values. As with other models, a project’s deviation from the
growth-rate mode! simply means that the project is doing something differently. For
example a project reusing a large amount of existing code may show an unexpectedly
sharp jump early in the code phase when reused code is placed in the configured library.
Figure 6-13 skows an example in which codc growth made several jumps resulting from
reuse but then followed the model derived for the local environment.

Example 13:
Tracking Software Changes

Goal: Determine whether requirements and design are stable.

Measures needed: Changes to source code and manager's project estimates.
(See Section 4.4.)

By tracking the changes made to the controllea source library. 2 manager can identify
unstable requirements or design. Plotting the behavior cf a current project’s change rate
against the orgunization’s predictive mwodel indicaies whether the project is on truck or is
deviaiing. Exaggerated flat spots (periods without changes) or large jumps {many changes
made at the same time) in the data should raise flags for turther investigation. Some
deviations may be readily explained; for example, Jduring testing, changes are often
grouped and incorporated into the configured software ai the same time, thus causing a
large jump in the weekly change rate.

SEL-94-002 90

1
| — Sysiem | Acceptance
Design I Code/Test Tast Tast
100 —
I
90 | I <|—au|u3
80 | |
70 1 I Buld 2 I I
g 60 4 I [|
: | I
e ! I I
° I
° 40 - Buldt _ | | I
- S |
I I I
20 1 | | |
10 i I I
L S ST T B R B
10 20 30 40 50 60 70 80 90 100
% of Schadule
—

Figure 6-13. Growth Rate Deviation ’

Figure 6-14 presents an example from actual data for a project that experienced a higher
than normal change rate. The requirements for this 130-KSLOC system were highly
unstable, resulting in a deviation from the existing model (introduced in Figure 6-12). By
recognizing the change rate early, managers could compensate by tightening CM
procedures to maintain the quality and the schedule.

—

10.00 -

9.00

8.00 <

7.00

6.00

5.00

4.00 -

Cumulative Changes per KSLOC

3.00 I
2.00 4

1.00

0.00

Figure 6-14. Change Rate Deviation

91 SEL-94-002

Example 14:

Tracking Staff Effort
Goal: Determine whether replanning is necessary.
Measures needed: Initial project plan and weekly effort data.

(See Sections 4.1 and 4.4.)

By using the expected effort distribution and staffing profile over the life-cycle phases, a
manager can predict the total cost and schedule based on the effort spent to date. If more
effort than was planned is required to complete the design of a system, the remaining
phases will probably require proportionately more effort. After determining why a
deviation occurred, a manager can make an informed response by adjusting staffing,
increasing the schedule, or scaling back functionality.

Deviations in effort expenditures can also raise quality flags. If all milestones are being met
on an understaffed project, the team may appear to be highly productive, but the product
quality may be suffering. In such a case, the manager should not automatically reduce
effort predictions. An audit of design and code products, using both effort data and error
data, can support an informed decision about whether to add staff to compensate for work
not thoroughly completed in earlier phases.

Figure 6-15 presents an example of the use of measurement data in monitoring a project to
determine whether replanning is necessary. Effort data were a key factor in management’s
detection and correction of several problems that would have jeopardized this project’s
eventual success.

R =R 3 Rl b b Ed oo B
':.°:. Actual Data
L]

§,
{
'

R
T

T

Ful-Time- Equivalent (40-Hour Work Weeks) of Staff
>
T T

Figure 6-15. Staff Effort Deviation

SEL-94-002 92

The original staffing plan was based on an underestimation of the system size. Toward the
end of the design phase, 40 percent more effort than planned was regularly required,
indicating that the system had grown and that replanning was necessary. Although the
manager’s estimates of size did not reflect the significant increase, the staffing profile
indicated that the system was probably much larger than anticipated. The required effort
continued to grow, however, in spite of the new plan that projected a leveling off and then
a decline. A subsequent audit revealed that an unusually high number of requirements
were still unresolved or changing, resulting in excessive rework. As a part of the
corrective action, a second replanning activity was needed.

Example 15:
Tracking Test Progress
Goal: Determine whether the testing phase is progressing as
expected.
Measures needed: Failure report data and change data.
(Sre Section 4.2.)

By consistently tracking reported versus fixed ciscrepancies, a manager gains insight into
software reliability, testing progress, and staffing problems. The open failure reports
should decline as testing progresses unless the project is understaffed or the software has
many defects.

When the “open” curve falls
below the “fixed” curve, defects
are being corrected faster than
new ones are reported. At that
time, a manager can more con-
fidently predict the completion
of the testing phase. Figure 6-16
shows an example of discrep-
ancy tracking that gave the
manager an early indication of 1 \\
poor software quality (at Week 021 Fixed
15). Staff members were added .
to increase the error-correction o i) ;) n
rate (during Weeks 20 through o2
35), and the system attained i

stability (at Week 35).

Number of F alure Reports
(in Thousands)
1

Figure 6-16. Tracking Discrepancies

93 SEL-94-002

Example 16:
Tracking Software Errors

Goal: Determine the quality of the software.
Measures needed: Error report data, historical medels, and size estimates.
(See Sections 4.2, 4.4, 5.3.3, and 6.1.3.)

One commonly used measure of software quality is the software error rate. Tracking the
project’s error rate against an organization’s historical model can provide a simple
estimate of the predicted quality of the delivered software. A consistent understanding of
what to count as an error enables the organization to make reasonable predictions of the
number of errors to be uncovered, as well as when they will be found.

The model in Figure 6-8 indicates that detected errors were reduced by half in subsequent
phases following coding and unit testing. By estimating the total size of the software and
by tracking the errors detected during the coding and unit testing phase, the project
manager can both observe the quality of the existing system relative to the model and also
project the quality of the delivered software.

Figure 6-17 is another view of the same model showing the cumulative errors detected
throughout the life cycle (see also Figure 5-7). The model compares error rates reported
during the coding and early test phases of an actual NASA project. The error rate can
deviate from the model for many reasons, including the possibility that the development
team is not reporting

errors. However, it is
. . System Acceptance
stil worthwhile to track Design Code/Test Test Test
the errors and to assume 1
that the information is 7 - i
|

reasonably reliable. The
example indicates that
the projected quality or
reliability (based on the
predicted error rate) is
an improvement over the
average local project;
indeed, in this case the
project turned out to be
an exceptionally reliable 1
system.

Cumulative Emrors per KSLOC
E-Y
|

Qe S - S GED MED GED S M MES EIL GED GER GEY GER EE D = ew

Schedule

Figure 6-17. Projecting Software Quality

SEL-94-002 9%

6.2.3 Evaluating Processes

A third responsibility of the software manager is to determine whether the project’s standard
software processes are, in fact, being used, and if there is any impact on the product. Project
personnel may fail to apply a standard process because of inadequate training, team inexperience,
misunderstandings, or lack of enforcement. Whatever the reasons, the manager must try to
determine whether the defined process is being used.

Example 17:
Source Code Growth
Goal: Determine whether the Cleanroom method is being applied.
Measures needed: Project phase date estimates, completed source code, and
historical models.
(See Section 4.4.)

One characteristic of the Cleanroom method is an increased emphasis on source code
reading before the code is released for system integration. This emphasis can be confirmed
by tracking the source code growth and observing two phenomena:

1. A delay in the phasing of the code completion profile

2. A significant step function profile of the code completion -ate caused by the strict
incremental development of Cleanroom

The sample plot in Figure 6-18 is based on actual data from an organization’s first use of
the Cleanroom method. The data
exhibited bnth expected phenomena,

suggesting that the Cleanroom method 100 Desgn commten | “Tem | Mo
was indeed part of the project process. 00 _r_'::_lj
!

Such measurement analysis is useful

whether the process is helping to attain
the organization’s goals. If not, the
manager should consider changing the
process. The following section

discusses using measurement to guide Figure 6-18. Impact of the Cleanroom Method
process improvement. on Software Growth

10 -

I

|
I \

. o . 80 1 i []
only to identify occasions when . | i [
expected differences do not occur, so 9 ol ! | |
that the manager can try to determine |3 | } :

3 s
the cause. z : | |
i # 40 I) I
By tracking the values of process 2 4 : ! !
parameters, the manager can determine 20 - : : !
1 I i
! I I
I]
80

J |
60

S

8_
2

!
50

10 20 30 40
% of Schadule

=1

95 SEL-94-002

6.3 Guiding Improvement

One key reason for software measurement is to guide continual improvement in the organization’s
products and services. The same measurement activities that support understanding and managing
can provide a basis for improvement.

To be able to assess how a process change affects a product, the manager must measure both the
processes applied and the products developed. Two key analyses must be performed:

1. Verify that the process rnder study shows the expected measured behavior (either
changed or similar to other processes).

2. Compare ongoing activities with the baseline measures developed to establish an
understanding.

A specific innovation may result in many changes to process elements, some helpful and others
not. Experience on subsequent projects is needed to adapt the process change to an environment.
The types of adaptations include the following:

e Eliminate processes that provide little or no value.
e Accentuate processes that help.

e Determine the impact of specific techniques.

e Write new policies, standards, and procedures.

o Tailor processes for specific needs.

The two examples in this section illustrate the application of measurement for guiding
improvement.

Example 18:
Cleanroom

Assume that an organization’s goal is to decrease the error rate in delivered software
while maintaining (or possibly improving) the level of productivity. The organization must
understand the current software engineering process, using historical data to establish a
baseline for its error rate and productivity measures.

In this example, the organization has decided to change the process by introducing the
Cleanroom method (see Reference 13). Cleanroom focuses on achieving higher reliability
by preventing defects. Because the organization’s primary goal is to reduce the error rate,
there is no concern that the Cleanroom method does not address reuse, portability,
maintzinability, or many other process and product characteristics.

As the organization develops new products using the modified process, which
incorporates the Cleanroom method, it must continue to collect data for both process and
product measures and look for possible changes. Keep in mind that a change is not always
an improvement; it must be possible to measure two things: (1) that a diffevence exists
between the original and the changed product and (2) that the new product is better than
the original. Table 6-7 lists the measures that are important indicators for this example and

SEL-94-002 96

summarizes their usage. Other software process and product characteristics, such as
schedule, maintainability, and amount of reuse, may also reveal deviations beyond the
expected baseline ranges. Such deviations must be investigated to determine whether the
effect is related to the introduction of the Cleanroom method.

Table 6-7. Indicators of Change Attributable to Cleanroom

Measure [Type Indicator
Cost
Effort Product Expectation: Cleanroom should not

decrease productivity.

Effort Praocess Expectation: Cleanroom may show
distribution increased design time.

Size

Software Product Expectation: Cleanroom should have no
size impact.

Size growth | Process Expectation: Cleanroom may affect
measured profile.

Number of | Product Expectation: Cleanroom should increase
Errors reliability.

To observe changes, the organization must analyze the measurement data at regular
intervals during the Cleanroom development period and compare the results with the
baseline. For example, Figure 6-19a compares the results of measuring development
activities on several SEL projects that used the Cleanroom method against the current
baseline activity profile in the same organization. The slight changes in the effort
distribution profiles suggest that the new method may have affected the development
process, but the difference in percentages is not conclusive. A closer look (see Figure
6-19b) at the subactivities within the “code” category reveals more substantial differences
and provides clear evidence of an impact on the relative percentages of the code writing
and code reading processes.

During the Cleanroom experiment (sce Reference 14), the SEL also compared another
measure, software size growth, with the baseline. Figure 6-18 illustrates the marked
differences between the profiles. The Cleanroom profile exhibits a more pronounced
stepwise growth pattern, which results from the higher number of software builds required
by the Cleanroom method. Whereas developers typically used two or three builds on
projects that made up the baseline, they used from five to eight builds during the
Cleanroom experiment.

97 SEL-94-002

Baseline Cleanroom Projects

Other
b
2% Design
33%

Code
25%

. Al Activiies

Baseline Cleanroom Projects
Code Reading Code
20% Writing
48%

/

Code

- HAeading
Code Writing 509,
80%

b, Code Activities Only

Figure 6-19. Impact of the Cleanroom Method on Effort Distribution

Both of the measures discussed above—effort by activity and software growth—are
strong initial indicators that the Cleanroom method has indeed changed the process. Those
process measures alone cannot, however, prove that the change has benefited the product.
To determune that the change is an improvement requires an analysis of measures based on
the preject goals, specifically, higher product reliability (that is, lower error rates) and
stable productivity. Table 6-8 shows the error rate and productivity measuies for the
baseline and experimental projects using the Cleanroom method. (The Cleanroom
experiment includes data through the system testing phase and excludes acceptance
lesting; baseline values shown in the table have been adjusted to represent the same
portions of the life cycle.)

The results of the experiment appear to provide preliminary evidence of the expected
improvement in reliability after introducing the Cleanroom method and may also indicate
an improvement in productivity. Two conclusions can be drawn:

1. Process measures can verify that adopting a new technology has affected the
baseline process.

SEL-94-002

Table 6-8. Impact of the Cleanroom Method on Reliability and Productivity

Error Rate Productivity
Data Source | (Errors per KDLOC) (DLOC per Day)
Baseline 5.3 26
Cleanroom 1 4.3 40
Cleanroom 2 3.1 28
Cleanroom 3 6.0 20

2. Product measures can quantify the impact (positive, negative, or none) of a new
technology on the product.

Both types of measures can then be used to model the new process and expand the

experience baseline.

Example 19:

Independent Verification =nd Validation

Not all process changes result in measured product benefits. In 1981, the SEL studied a
testing approach using an independent verification and validation (IV&V) process. IV&V
promised to improve error detection and correction by finding errors earlier in the
development cycle, thus reducing cost and increasing overall reliability with no negative
impact on productivity. Determining the effect of this testing process on reliability and
cost were two major study goals. Table 6-9 lists the measures that are important indicators

for this example and summarizes the use of each.

Measurement analysts selected two projects for IV&V study «ad two similar ones for use
as baseline comnparison efforts. For this study, the activities performed by the IV&V team

included the following:

e Verifying requirements and design

¢ Performing independent system testing

* Ensuring consistency from requirements to testing

e Reporting all findings

The next series of figures shows the measured results of the study.

99

SEL-94-002

Table 6-9. Indicators of Change Attributable to IV&V

Measure Type indicator
Cost
Effort Product Expectation: Cost of IV&V effort would be offset by

reductions in error correction effort and decreases in
system and acceptance test effort.

Effort Process Expectation: IV&V process would shew increased

distribution effort in early phases.

Staffing Process Expectation: Greater startup staffing for IV&V would

profile affect profile model.

Errors

Number Product Expectation: IV&V process would increase
reliability.

Source Process Expectation: The number of requirements and

design errors found in later phases would decrease.

Figure 6-20 illustrates the effect of IV&V on requirements and design errors.
Requirements ambiguities and misinterpretations were reduced by 87 percent. The results
show relatively little effect on design errors, however, especially on complex design errors.

Baseline V&V
Requirements——;

8%

Requirements Functional
Functional 1% Specs
Specs
8%

Design Design

84% 92%
Simple: 66% Simple: 70%
Complex: 18% Complex: 22%

Figure 6-20. Impact of IV&V on Requirements and Design Errors

Figure 6-21 depicts the percentage of errors found after the start of acceptance testing.
The IV&YV projects exhibited a slight decrease in such errors but showed no significant
increase in the early detection of errors.

SEL-94-002 100

20%

16%
16 -1

14
12 -
0 -

% of Errors

o N & O
Il

Baselne V&V

Figure 6-21. Percentage of Errors Found After Starting Acceptance Testing

Figure 6-22 shows the error rates by phase; the rates in the operations phase are the key
indicators of IV&V effectiveness. The baseline error rate during operations is 0.5 errors
per KSLOC; however, the error rate for the IV&V projects was slightly higher.

12 4

"o xmo X V&V Project 1

10 O IVa&VProe.c2

8 - 0(8.2)

Errors per KSLOC

0(24) X(2.4)

x03 ots 07 ooee)

0 t } t
Code/Unt Test Systemn Test Acceptance Test Operatons

Figure 6-22. IV&YV Error Rates by Phase

The final indicators for this experiment were effort distribution and overall cost. Figure
6-23 shows that process change in the effoit distribution by phase did occur with the
IV&V projects. According to expectation, developers’ design effort slightly decreased;
however, the substantial increase in coding and unit testing was somewhat surprising.

101 SEL-94-002

Baseline

Systemn and
Acceplance

System and Test 29%

Acceplance
Test 419,

Code and Unit Code and Unit
Test 2B% Tosl 48%

NOTE: This comparison ignores the "oder” category.

Figure 6-23. Impact of IV&V on Effort Distribution

Figure 6-24 shows the impact of the IV&YV process in two areas: the overhead of the
IV&V team itself and the increased cost to the development team because of their
interactions with a new group. Together, the overall cost increased by 85 percent. an
unacceptably high cost to pay for no measurable increase in overall product quality.

LAY Overhead
CIMandgers
L Developers

Stalf-Months per KDLOC

Baselon Wav

Figure 6-24. Impact of IV&V on Cost

This example is not intended to indicate that IV&V technology is never beneficial. On
projects requiring extremely high levels of safety and reliability, the benefits of IV&V can
often outweigh the added cost. The cited sofiware project was a ground-based, non-life-
critical system for which the extra safety was not worth the added overhead. Every
organization must judge the appropriateness of a potentiai software process change within
the context of the local environment and the organization’s goals.

SEL-94-002

Chapter 7. Experience-Based Guidelines

Chapter Highlights i

MEASUREMENT GUIDELINES
v The goal is appli«. ition of resuits, not data collection.

+ The focus should be on self-improvement, not external
comparison.

v Measurement data are inexact.

v Interpretation is limited by analysts’ abilities.

v Measurement should not threaten personnel.

v Automation of measurement has limits.

103 SEL-94-002

to include software measurement as part of its development process. Some of these

guidehines have been repeated several times throughout this docement. Although some
may seem counterintuitive, €ach has been derived from the experiences of extensive, mature
measursment programs.

T he following guidelines are precauationary notes for any software organization that plans

Guideline 1:
Data collection should not be the dorminant element of process
improvement; application of measures is the goal.

Focusing on collecting data rather than on analyzing and applying the data wastes time, effort, and
energy. Although many organizations are convinced that measurement is a aseful addition to their
software development and maintenance activities, they do not fully pian for the u 2, benefits, and
applications of the collected measures. As a result, the measurement program focuses on defining
the list of measures to be collected and the forms that will be used to collect the Jata, rather than
on the specific goals of the measurement efforts.

Having specific and clearly defined goals facilitates the task of determining which data are
required For example, if a goal is to determine error class distribution characteristics for each
phase of the software life cycle, then data must be gathered on what classes of errors occur in
what phases.

Experience in major mature measurement programs has shown that at least three times as much
effort should be spent on analyzing and using collected data as on the data collection process
itself. Focusing on data collection is a common mistake, similar to that of focusing on the
development of “lessons learned” from software efforts rather than on applying previous lessons
learned. More software lessons-learned reports are written than are ever rcad or used.

Software developers who are asked to collect data have the right to know how the data will be
used and how that use will benefit their organization. Plans for analysis and application of the data
must be well developed before the collection process is initiated. A measurement srogram that
focuses on the collection, as opposed to the application, of the measurement data will fail.

Guideline 2:
The focus of a measurement program must be self improvement, not
external comparison.

Because the primary reasons for measurement are to guide, manage, and improve within specific
software domains, the analysis and use of any measurement information must logically focus on
local improvement. Little emphasis should be placed on comparing local results and information
with that from other domains, because combining data across dissimilar domains rarely produces
meaningful results. In fact, organizations rarely define specific goals requiring external
comparison.

SEL-94-002 104

There are two significant corollaries to this guideline:

1. Define standard terminology locally instead of generating widely accepted standard
definitions. For example, provide a standard local definition of a line of code, because
there is no universally accepted definition.

2. Use measurement data locally. Combining measurement data into larger, broader
information centers has never proved beneficial and consumes unnecessary effort. Focus,
instead, on producing higher quality, local data centers.

J Guideline 3:
Measurement data are fallible, inconsistent, and incomplete.

Measurement programs that rely significantly on the high accuracy of raw software measurement
data are probably doomed to failure. Because of the nature of the measurement process and the
vast number of uncertainties that are part of it, the measurement data will always be inexact.

Relying primarily on the statistical analysis of the data collected for software development is a
serious mistake Collection of measurement data is one small component of the overall set of
factors required to analyze software and software technologies effectively. The following
additional factors must be considered:

o Sukjective information—The general observations and assessments of developers,
managers, cxd analysts are as vital as the objective data collected via forms and tools.

o Context of the information—Each set of data must be analyzed within a well-understood
and defined context. Attempting to analyze larger and larger sets of measurement data
adds to the confusion and difficulty of putting each set of data in its appropriate class of
interpretation.

® Qualitative analvsis—Because of the ever present danger that measures are erroneous,
biased, or missing, each analysis and application of measurement data must include an
analysis of the quality of the information. The measurement data characteristics must first
be determined by analyzing patterns, inconsistencies, gaps, and accuracy. Any
interpretation of measurement data results must include compensation for the quality of
the data.

o Defined z0als—Successful analysis of available data requires that the analyst first
understand the goais that motivated the data collectior.. By understanding the goals of the
measurement efforts, an analyst can interpret data gaps, biases, definitions, and even levels
of accuracy. The goals will significantly influence the quality, consistency, and level of
detail of the data analysis.

Because of the limited accuracy of measurement data, overaependence on statistical analysis of
these data can lead to erroneous conclusions and wasted efforts. Although statistical analysis is a
poweriul mechanism for determining the strengths and weaknesses of collected measures and
providing insight into the meaning of the data, it must be used as only one limited tool toward the
goal of meaningful application of measurement data.

105 SEL-94-002

Another potential pitfall exists in the use of subjective data to characterize software development.
Many measurement programs attempt to characterize the processes of each development project
by recording a rating factor for several process elements such as “degree of use of modern
programming practices,” “experience of the team,” “complexity of the problem,” or “quality of
the environment.” Although successful analysis of measurement data must consider the context,
problem, domain, and other factors, extensive studies within NASA measurement programs have
repeatedly failed to show any value in analyzing such rating information. Because there are many
inconsistencies in the definition and interpretation of terms such as “problem complexity” or
“modern programming practices” and because of the inconsistencies in the value judgments of the
people doing the ratings, the use of measurement data should be limited to providing a general
understanding of the project—rnothing more.

Guideline 4:
The capability to qualify a process or product with measurement data is
limited by the abilities of the analysts.

Measurement data must be interpreted properly to provide meaningful results. For example, if an
analyst cannot clearly and precisely define “software complexity,” then no tool or measure can
determine if software is too complex. There is a danger in expecting that a large amount of data
combined with some software tool will provide a manager or analyst with a clear representation of
software quality. The data and tool can represent only what the manager or analyst interprets as

quality.

Inexperienced measurement programs occasionally assume the existence of a generally accepted
threshold defining the boundary between acceptable and unacceptable values for some measures.
For example, a program unit that is larger than some predetermined code size might be deemed
undesirable. Similar thresholds are sometimes assumed for complexity, error rate, change rate,
test failure rate, and many other measures. Establishing control limits for comparing measurement
values is important, but the limits must be computed on the basis of local experience. It should not
be assumed that there is some predefined threshold that defines an absolute boundary of
acceptable values for local measures.

J Guideline 5:
Personnel treat measurement as an annoyance, not a significant threat.

One of the most obvious and important guidelines for any measurement program is to emphasize
consideration for the concerns of development and maintenance personnel. Measurement
programs should not be used to qualify or characterize differences between individuals providing
measurement data. If confidentiality is assured, project personnel will provide requested
measurement information as freely as they provide other documentation or reports.

Experience has shown that, as long as managers ensure that measurements will never be used to
evaluate performance or rate programmers, the development and maintenance teams will treat
measurement responsibilities as just one additional task that is a part of their job.

SEL-94-002 106

Guideline 6:
Automation of measurement has limits.

Nearly every measurement program starts with two well-intentioned goals:
1. Measurement will be nonintrusive.
2. Measurement will ke automated.

The process of measurement, however, cannot be totally automated. Essential human processes
cannot be replaced by automated tools unless the measurement program is limited to a high-level
survey activity, because the opinions, insight, and focus of individual programmers and managers
are necessary to carry out effective measurement programs.

Tools can automate a limited set of routine processes for counting such measures as code size,
code growth, errors, and computer usage; however, insight into the reasons for errors, changes,
and problems requires human intervention. Without that insight and the verification of
measurement information, collected data are of limited value.

One NASA organization with a mature measurement program uses the automated tools listed in
Table 7-1.

Table 7-1. Exampies of Automated Measurement Support Tools

Tool ' Use

Code analyzers Record code characteristics at project

completion
DBMS tools Store, va'idate, and retrieve irformation
CM tools Provide counts of changes to source code

Operating system | Provide computer usage data
accounting tools

1iis same organizatic 1 has found that many other measures must be compiled manually; some
examples are listed in Figure 7-1.

Even a well-defined and focused measurement program requires manual intervention. Because the
team provides only the limited amount of information needed to satisfy the organizational goals,
however, the measurement program will have a correspondingly limited intrusive impact on the
development and maintenance organization.

107 SEL-94-002

SEL-94-002

Compile without tools

Evvor chouaclerigflics

Change chavacteristics of
designs and code

Processes applied

Code avigin. (newly built,
reuged verbatioo, oy
mwrdihed)

Weekdy howy of each

wdavidual by actovity

Testing strategy and resudls
Post-develobment analvis

Planned versus actual dates,
scheduldes, and cost N

Figure 7-1. Examples of Mpasures Collected Manugaily

108

Appendix A. Sample Data Collection Forms

his appendix contains many of the data collection forms that are used within the NASA

GSFC SEL measurement program. Reference 19 provides a detailed guide to using all of

the SEL forms. An organization establishung a new measurement program may want to
base its own set of forms on the samples. Table A-1 summarizes the purpose of the forms, which
appear in alphabetical order on the following pages.

Table A-1. SEL Datia Collection Forms

Name Purpose
Change Report Form Records information on changed units; is filled out each time a
configured unit is modified
Component Crigination Provides information on software units as they are entered into the

Form

project's configured library

Development Status Form

Provides a record of the current status of the project parameters; is filled
out by the project manager on a regular basis

Maintenance Change
Report Form

Characterizes the maintenance performed in response to a change
request

Personnel Resources Form

Provides information on hours spent on a project and how the effort was
distributed; is filled out weekly by software developers or maintainers

Project Completion
Statistics Form

Records final project statistics

Project Estimates Form

Records the completion estimates for project parameters; is filled out by
project managers

Project Startup Form

Records general project information collected at the project startup
meeting

Services/Products Form

Records use of computer resources, growth history, and services effort;
is completed weekly

Subjective Evaluation Form

Records opinions that characterize project problems, processes,
environment, resources, and products

Subsystem Information
Form

Provides subsystem inforination at preliminary dasign review and
whenever a new subsystem is created

Weekly Maintenance Effort
Form

Records hours expended on maintenance activities

109

SEL-94-002

SEL-94-002

Name:

Project:

CHANGE REPORT FORM

Approved by:
Date:

Section A - Identification

Describe the change: (What, why, how)

Effect: What components are changed?

Prefix Name Version

Effort: What additional components
were examined in determining
what change was needed?

{Attach list if more space is needed)
Location of developer's source files:

month day year

Need for change determined on:

Check here if change involves
Ada components. (if so, complete

Change completed (incorpcrated into system):

questions on reverse side.)

Effort in person time to isolate the change (or e(ror):

Effort in person time to implement the change (or correction):

1hrfless 1hr/iday 13days > 3days

Section B - All Changes

Type of Change (Check one)
D Error correction D Optimization of time/space/
[3 Planned enhancement accuracy '
J impiementaton of requirements O Adaptation to environment
change
O improvement of clanty, O Other (Describe below)
maintainability, or documentation
D Improvement of user services

Y N Effects of Change

[0 [Owas the change or comection to one and anly one
component? (Must match Effect in Section A)

3 O Did you look at any other component? (Must
match Effort in Section A}

3 [J oid you have to be aware of parameters passed
exphicitly or implicitly (e.g . COMMON blocks) to or

xternal)
U pravious change (module to external communication)

O Data (vaiuve or structure)
(e.g., wrong variable used)
a Computational
(e.g., arror in math axpression)

i two are squally sppiicable, chack the
one higher on the list.

O inseron/delebion of debug code from the changed components?
Section C - For Error Corrections Only
Source of Error Class of Error Characteristics
{Check one) (Check most applicable)* {Check Y or N for all)
Initialization Yy N
g :cquiromm . 8 Logich " [0 O oOmiasion error (e.g., something was left out)
unctional specifications (e.g., flow of control incorrect)
O3 Design O intertace (internal) O O commisaion error (e.g., something incorrect
O code (module-to-module communication) was included)
[intertace (o

[0 [Error was created by transcription (clerical)

For Libranan’'s Use Only

Number:
Date:
Enteredby: 00
Checked by

JANUARY 1994

Figure A-1. Change Report Form (1 of 2)

110

CHANGE REPORT FORM

Ada Project Additional Information

1. Check which Ada feature(s) was invoived in this change (Check all that apply)

] Datatyping [J Program structure and packaging
[0 Subprograms [] Tasking

O Exceptions [0 System-dependent features

[J Generics [J Other, please specify

(e.g., VO, Ada statements)
2. For anerror involving Ada components:

a. Does the compiler documentation or the language Ym)

reference manual explain the feature clearly?

b. Which of the following is most true? (Check one)
[J Urderstood features separately but not interaction
[0 Understood features, but did not apply correctly
[0 Did not understand features fully
[0 Confused feature with feature in another language

c. Which of the following resources provided the information
needed to correct the error? (Check all that apply)

[Q Ciass notes [] Own memory
(] Ada reference manual (] Someone not on team
[Own project team member [Q Other

d. Which tools, if any, aided in the detection or correction of this error? (Check all that apply)

[0 Compiler (O Source Code Analyzer

[0 Symbolic debugger [T P&CA (Performance and Coverage Analyzer,
[J Language-sensitive editor [DEC test manager

O cms [Other, specify

3. Provide any other information about the interaction of Ada and this change
that you feel might aid in evaluating the change and using Ada

6201G(13)-13

NOVEMBER 1991
Figure A-1. Change Report Form (2 of 2)

111 SEL-94-002

COMPONENT ORIGINATION FORM

Identification

Name:
Project: Date:

Subsystem Prefix:

Component Name:

Configuration Management Information
Date entered into controlled library (supplied by configuration manager):

Library or directory containing developer's source file:

Member name:

Relative Difficulty of Developing Component
Please indicate your judgment by circling one of the numbers below.

Easy Medium Hard
1 2 3 4 5
Origin

If the component was modified or derived from a different project, please indicate the
approximate amount of change and from where it was acquired; if it was coded new (from
detailed design) indicate NEW.

NEW For Libranan's Use Only
____Extensively modified (more than 25% of Number:

statements changed) Date:

Slightly modified Entered by:

Old (unchanged) Checked by:

It not new, what project or library is it from?
Component or member name:

Type of Component (Check one only)

_ _ INCLUDE file (e.g., COMMON) BLOCK DATA file
Control language (e.g., JCL, DCL, CLIST) Ada subprogram specification
ALC (assembler code) Ada subprogram body
FORTRAN source Ada package specification
Pascal source Ada package body
C source Ada task body

NAMELIST or parameter list

Display identification (e.g., GESS, FDAF)
Menu definition or help

Reference data files

Ada generic instantiation
Ada generic specification
Ada generic body

Other

T
T

Purpose of Executable Component

For executable code, please identify the major purpose or purposes of this component.
(Check all that apply).

I/O processing Control module
Algorithmic/computational Interface to operating system
Data transfer Process abstraction
Logic/decision Data abstraction

NOVEMBER 1991

Figure A-2. Component Origination Form

SEL-94-002 112

DEVELOPMENT STATUS FORM

Name:

Project:

Date:

Please complete the section(s) that s appropnate for the current status of the project.

Design Status

Planned total number of components to be designed
(New, modified, and reused)

Number of components designed
(Prolog and PDL have been completed)

Code Status

Planned total number of components to be codec
(New, modified, and reused)

Number of components compieted
{Added to controlled library)

Testing Status System Test Acceptance Test

Total number of separate tests planned

Nurnber of tests executed at least one time

Number of tests passed

Discrepancy Tracking Status (from beginning of system testing)

Total number of discrepancies reported

Total number of discrepancies resoived

Specification Modification Status (from beginning of requirements analysis)

Total number of specification modi.cations recewed

Total number of specification modifications completed (implemented)

Requirements Questons Status (from beginning of requirements analysis)

p——
Total number of questions submitied to analysts

Total number of questions answered by analysts

Check here if there For Libranan's Use Only
are no changes
Number:
Date- ©
Entered by g
Checked by: 5
NOVEMBER 1891
Figure A-3. Development Status Form
113 SEL-94-002

For Libranans Use Only
MAINTENANCE CHANGE REPORT FORM —
Name: OSMRNumber: [Dawe
Entered by
Project: Date: Checked by
SECTION A: Change Request Iinformation
Functional Description of Change:
What was the type of modification? What caused the .:hange?
— Correction —— Reguirements/specifications
—— Enhancement ——- Software design
—— Adaptation e Code
—— Preious change
—— Other

SECTION B: Change Implementation information

Components Added/Changed/Deleted:

1hrto 1daytc 1weskto
< thr 1day 1week 1month > 1month

Estimate effort spent isolating/determining the change:
Estimate effort to design, implement, and test the change:

Check all changed objects: if code changed, characterize the change (check most
applicable):
—— Requirements/Specifications Document —— Initialization
—— Design Document —— Logic/control structure
—— Code {e.g., changed flow of control)
—— System Description —— Interface (internal)
____ Users Guide (module to module communication)
—__ Other — Interface (external)
(module-to-external communication)
—— Data {value or structure)
(e.g., variable or value changed)
——— Computational
(e.g., change of math expression)
—— Other (none of the above apply)

Estimate the number of lines of code (including comments):

added changed deletad
Enter the number of components:

added changed deleted
Enter the number of the added components that are:

totally new totally reused reused with
modifications

NOVEMBER 1991
Figure A-4. Maintenance Change Report Form

SEL-94-002 114

6201G(39)-12

Personnel Resources Form

Name:

Project: Date (Friday):

SECTION A: Total Hours Spent on Project for the Week:
SECTION B: Hours By Activity (Total of hours in Section B should equal total hours in Section A)

Activity Activity Definitions Hours
Predesign Understanding the concepts of the system. Any work pnor to the actual design (such
as requirements analysis).
Create Design Development of the system, subsystem, or components design. includes development

of PDL, design diagrams, etc.

Read/Review Design | Hours spent reading or reviewing design. Includes desigh meetings, formal and informal
reviews, or walkthroughs.

Write Code Actually coding system components. includes both desk and terminal code development.

Read/Review Code Code reading for any purpose ather than isolation of errors.

Test Code Units Testing individual components of the system. Includes wnting test drivers.

Debugging Hours spent finding a known error in the system and developing a solution. Includes gen-
eration and execution of tests associated with finding the error.

Integration Test Writing and executing tests that infegrate system components, including system tests.

Acceptance Test Running/supporting acceptance testing.

Other Other hours spent on the project .iot covered above. includes management, meetings,
training hours, notebooks, system descriptions, user's guides, etc.

SECTICN C: Effort On Specific Activities (Need not add to A)
(Some hours may be counted in more than one area; view each activity separately)
Rework: Estimate of total hours spent that were caused by unplanned changes or efrors. Includes

effort caused by unplanned changes to specifications, erroneous or changed design, efrors or
unplanned changes to code, changes to documents. (This includes all hours spent debugging.)

Enhancing/Refining/Optimizing: Estimate of total hours spent improving the efficiency or clarity of design, or
code, or documentation. These are not caused by required changes or efrors in the system.

Documenting: Hours spent on any documentation of the system. Includes development of design documents,
prologs, in-line commentary, test plans, system descriptions, user's guides, or any other system
documentation.

0 g d

Reuse: Hours spent in an effort to reuse components of the system. Includes effort in looking at other
system(s) design, code, or documentation. Count total hours in searching, applying, and testing,

For Libranan's Use Only

Number
Date
Emered by
Chacxad by

NOVEMBER 1991
Figure A-5. Personnel Resources Form

115 SEL-94-002

Personnel Resources Forn

(CLEANROOM VERSION)
Name:

Project:_ Date (Friday):

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: Hours By Activity (Total of hours in Section B should equal total hours in Section A)

decomposition, stepwise refinement, development of PDL, design diagrams, etc.

Activity Actvity Definitions Hours
Predesign Understanding the concepts of the system. Any work prior to the actual design (such
as requirements analysis).
Pretest Developing a test plan and building the test environment. Includes generating test cases,
generating JCL, compiling components, building libraries, and defirung inputs and
probabilities.
Create Design Development of the system, subsystem, or components design. Includes box structure

Verify/Review Design | Includes design meetings, formal and informal reviews, and walkthroughs.

Write Code Actually coding system components. Includes both desk and terminal code development.

Read/Review Code Code reading for any purpose other than isotation of emrors. Includes venfying and
reviewing code for corectnes.

Independent Test | Executing and evaluating tests of system components.

Response to SFR Isolating a tester-reported problem and developing a solution. Includes wnting and
reviewing design or code to isolate and correct a tester-reported problem.

Acceptance Test Running/supporting acceptance testing.

Other Other hours spent on the project not covered above. Includes management, meetings,

training hours, notebooks, system descriptions, user's guides, efc.

SECTION C: Effort On Specific Activities

Methodology Understanding/Discussion: Estimate the total hours spant leaming, discussing, reviewing or
attempting to understand cleanroom-related methods and techniques. Includes all time spent in training.

]

For Libranan's Use Only

Number

Date

Entsred by

Checked by

NOVEMBER 1991
Figure A-6. Personnel Resources Form (Cleanroom Version)

SEL-94-002 116

PROJECT COMPLETION STATISTICS FORM
Name:
Project: Date:
Phase Dates (Saturdays) Staff Resource Statistics
Phase Start Date Technical and
Requirements Definition Management Hours
Design Services Hours
;s‘em Yot Computer Resource Statistics
Acceptance Test Computer CPU hours No. of runs
Cleanup
Maintenance
Project End
Project Size Statistics
Generai Parameters Source Lines of Code
Nuvmber of subsystems Total
Number of components New
Number of changes Slightly Modified
Pages of documentation Extensively Modified
O
Comments
Executai..e Modules Executable Statements Statements
Total Total Total
New New New
Slightly Modified Slightly Modified Slightly Modified
Extensively Modified Extensively Modified Extensively Modified
Oud Oid Oid
Note: Al of the values on this form are to be actual values at For Libraran's Use Only

the completion of the project. The “salues entered by

hand by SEL personnel reflect the data collected by Numb i

the SEL during the course of the project. Update Date: -

these according {0 project records and supply values Ertarad by S

for all blank fisids. Checked by: é

NOVEMBER 1991

Figure A-7. Project Completion Statistics Form

117

SEL-94-002

PROJECT ESTIMATES FORM

Project:

Date:

Phase Dates (Saturdays)

Staff Resource Estimates

Phase

Start Date Programmer Hours

Requirements Definitior Management Hours

Design

Services Hours

Implementation

System Test

Acceptance Test

Cleanup

Project End

Project Size Estimates

Number of subsystems

Number of components

Source Lines of Code

Total

Modified

Oid

Note: All of the valuas on this form are to be Fot Librarian's Use Only
estimates of projected values at completion |

of the project. This form should be
submitted with updated estimates every 6to | 2=t
8 weeks during the course of the project. Entered by:

Number:

Chec’ > by:

NOVEMBER 19891

SEL-94-002

Figure A-8. Project Estimates Form

118

6201G(13)-16

PROJECT STARTUP FORM

Name:
Project: Date:

PLEASE PROVIDE ALL AVAILABLE INFORMATICN
Project Full Name:

Project Type:
Contacts:
Language:
Computer System: _

Account:

Task Number:

Forms To Be Collected: (Circle forms that apply)

PEF PRF CLPRF DSF SPF SIF COF CCF CRF SEF PCSF WMEF MCRF

General Notes:

Personnel Names (indicate with * if not in database):

€201G13)-38

NOVEMBER 1921
Figure A-9. Project Startup Form

119 SEL-94-002

SERVICES/PRODUCTS FORM
Project:
Date (Friday):
COMPUTER RESOURCES
Computer CPU Hours No. of Runs
GROWTH HISTORY
Components
Changes
Lines of Code
SERVICES EFFORT
Service Hours
Tech Pubs
Secretary
Proj Mgmt For Librarien's Use Oaly
Other Number:
Date:
Entered by:
Checkad by:
NOVEMBER 1991

SEL-94-002

Figure A-10. Services/Products Form

6201G(13)-08

SUBJECTIVE EVALUATION FORM

Name
Project: Date:

Indicate response by curcling the corresponding numenc ranking.

L PROBLEM CHARACTERISTICS

1 2 3 4 5
Easy Average Difficult

2. How bght were schedule constraints on project?
1 2 3 4 5
Loose Average Tight

3. How stable were requirements over development period?

1 2 3 4 5
Loose Average High

4. Assess the overali quality of the requirements specificaton documents, including their clanty, accuracy,
1 2 3 4 S
Low Average High

6. How ngorous were formal review requirements?
1 2 3 4 5
Low Average High

. PERSONNEL CHARACTERISTICS: TECHNICAL STAFF

7. Assess overall quality and ability of development team

1. Assess the intrinsic difficuity or complaxity of the problem that was add: d by the soft development.

6201G¢13+29

i 2 3 4]
Low Average High
8 How would you charactenze the devetopment team's expenence and familianty with the apphcaton area of
the project?
1 2 3 4 5
Low Average High
9. Assess the deveiopmant leam's expenence and famiianty with the developmert environment | - dware
and support software)
1 2 3 4 5
Low Average High
10. How stable was the composition ol the devalopment team over the durabon of the project?
1 2 3 4 5
Loose Average High
FOR LIBRARIAN'S USE ONLY
Number. Entered by
Data- Checked by.
NOVEMBER 1991

Figure A-11. Subjective Evaluation Form (1 of 3)

121

SEL-94-002

SUBJECTIVE EVALUATION FORM

. PERSONNEL CHARACTERISTICS: TECHNICAL MANAGEMENT
11 Assess the overall performance of project management.

1 2 3 4 s
Low Average High

12. Assess project management's expenence and familiarity with the apphcation.
1 2 3 4 5
Low Average High

13 How stable was project management dunng the project?
1 2 3 4 5

Low Average High

14. What degree ot disciplined project planning was used?
1 2 3 4 5

Low Average High

15. To what degree were project plans foBowed?
1 2 3 4 5
Low Average High
V. PROCESS CHARACTERISTICS

16. To what extent did the development team use modem programming prachces {PDL, top-down
development, structured programming, and code reading)?
1 2 3 4 5
Low Average High
17. To what extent did the development team use well-defined or disciplined procedures to record
specificabon modificabons, requirements quesbons and answers, and interface agreements?
1 2 3 4 5

Low Average High
18. To what extent dic the development team use a well-defined or disciplined requirements analysss
methodology?
1 2 3 4 S
Low Average High

19. To what extent did the development team use a well-defined or disciplined dasigr. methodology?
1 2 3 4 5

Low Average High

20. To what extent did the development team use a weil-defined or disciplined testing methodoiogy?
1 2 3 4 5
Low Average High
V. PROCESS CHARACTERISTICS

21. What software tools were used by the development team? Check all that apply from the iist that follows
and dentify any other tools that were used but are not listed.

[Compiler O cat

O Linker O PANVALET

O Edrtor [0 Test coverage tool

{0 Graphxc display busider [intertace checker (RXVPSO, etc.)

[0 Requirements language processor O Language-sensitive editor

[Structured analys:s support tool O symbolic debugger

O POL processor [Configuration Management Tool (CMS, etc)
0 1sPF [[] Others (1dentity by name and function)

O sap

22. To what extent dd the deveiopmant team prepase and follow test plans?
1 2 3 4 5
Low Average High

Figure A-11. Subjective Evaluation Form (2 of 3)

SEL-94-002 122

6201G(12)30

SUBJECTIVE EVALUATION FORM

V. PROCESS CHARACTERISTICS (CONT'D)

23. To what extent dud the development team us.. well-defined and disciphined qualily assurance procedures
(reviews, inspections, and walkthroughs)?
1 2 3

4 5
Low Average High
24. To what extent did development team use well-defined or disciphined configuration management
procedures?
1 2 3 4 5
Low Average High
V. ENVIRONMENT CHARACTERISTICS
25. How would you charactenze the development team’s degree of access to the developmant system?
1 2 3 4 5
Low Average High
26. What was the rato of programmers to termirals?
1 2 3 4 5
8:1 41 21 11 12

27. To what degree was the development team constrained by the sze of man memory or direct-access
storage available on the development system?

1 2 3 a4 5
Low Average High

28. Assess the system response ime:. were the turnaround times expenenced by the team satistactory in
hght of the size and nature of the jobs?
1

2 3 4 5
Poor Average Very Good
29. How stable was the hardware and system support software (iIncluding language processors) dunng the
project?
1 2 3 4 5
Low Average High
30. Assess the eftectiveness of the software toals.
1 2 3 4 5
Low Average High

VI. PRODUCT CHARACTERISTICS
31 To what degree does the delivarad software provide the capabilibes specified in the requirements?

1 2 3 4 5
Low Average High
32. Assess the quality of the delivered software product.
1 2 3 4 5
Low Average High
33. Assess the quality of the design that 1s prasent in the software product.
1 2 3 4 5
Low Average High
34. Assess the quality and completeness of the deliversd system documentation
1 2 3 4 5
Low Average High
35. To what degree were software products delivered on time?
1 2 3 4 5
Low Average High

36. Assess smoothness or relative ease of acceptance testing.
1 2 3 4

Low Average High

620160123

Figure A-11. Subjective Evaluation Form (3 of 3)

123

SEL-94-002

SUBSYSTEM INFCRMATION FORM

Name:
Project: Date:
Add New Subsystems
Subsystem Subsystem Subsystem
Prefix Name Function
Change Existing Subsystems
Action
Old Subsystem Prefix (R - Rename, New Subsystem Prefix
{Must exist in the database) D - Delete) {Must not exist in the database)

This form is to be completed by the time of the Preliminary Design Review (PDR). An update

must be submitted each time a new subsystem is defined thereafter. This form is also to be

used when a subsystem is renamed or deleted.

Subsystem Prefix: A prefix cf 2 to 5 characters used to identify the subsystem when naming
components

Subsystem Name: A descriptive name of up to 40 characters

Subsystem Function: Enter the most appropriate function code from the list of functions below:

USERINT: User Interface
For Lorarans Use Orly DPDC: Data Processing/Data Conversion
REALTIME: Real-time Control
Number: MATHCOMP: Mathema:.cal/Computational
Date GRAPH: Graphics and Special Device Support
Entered by: CPEXEC: Control Processing/Executive
Checkad by SYSSERV: System Services

NOVEMBER 1991

SEL-94-002

Figure A-12. Subsystem Information Form

124

8201G(13)-39

For tibraran's Use Only

WEEKLY MAINTENANCE EFFORT FORM —
Name:
Date
Project: Dste (Friday): oy
Checked by

Section A - Total Hours Spent on Maintenance (includes tima spent on all maintenance
activities for the project excluding writing specificstion modifications)

Section B - Hours By Class of Maintenance (Totai of hours in Section B should squat total hours in
Section A)

Class

Definition

Correction

Hours spent cn all maintenance associated with a system failure.

Enhancement

Hours spent on all maintenance associsted with modifying the system due
10 a requirements changa. Includes adding, deleting, or modifying system
features as a resuit of a requirements change.

Ad-ptation

Hours s..ort on all meintenance associated with modifying a system to
adapt to a change in hardware, systsm software, or environmental
characteristics.

Other

Other hours spent on the project (related to maintenancs) not covered
above. Includes management, meetings, etc.

Section C - Hours By Maintenance Activity
Section A)

{Total of hours in Section C should equsl total hours in

6201G(39)-10

Activity Activity Definitions | Hours

isolation Hours spent understanding the failure or request for enhancemant o7
adaptation.

Change Hours spent actually redesigning the system based on an understanding

Design of the necessary change.

knplementation Hours spent changing the system to compiets the necessary change.
This includes changing not only the code, but the associated
documentation.

Unit Test/ Hours spent testing the changed or added components. Includes hours

System Test spent testing the integration of the components.

Acceptance/ Hours spent acceptance testing or benchmark testing the modified

Benchmark Test syrem.

Other Other hours spent on the project (related to maintenance) not covered
above. Includes management, meetings, etc.

NOVEMBER 1891

Figure A-13. Weekly Maintenance Effort Form

125

SEL.-94-002

Appendix B. Sample Process Study Plan

SEL Representative Study Plan for
SOHOTELS
October 11, 1993
1. Project Description

The Solar and Heliospheric Observatory Telemetry Simulator (SOHOTELS) software
de . clopment project will provide simulated telemetry and engineering data for use in testing
the SOHO Attitude Ground Support System (AGSS). SOHOTELS is being developed by a
team of four GSFC personnel in Ada on the STL VAX 8820. The project is reusing design,
code, and data files from several previous projects but primarily from the Solar, Anomalous,
and Magnetospheric Particle Explorer Telemetry Simulator (SAMPEXTS).

The SOHOTELS team held a combined preliminary design review (PDR) and critical design
review (CDR) in April 1993. In their detailed design document, the SOHOTELS team stated
the following goals for the development effort:

¢ To maximize reuse of existing code
e Where reuse is not possible, to develop code that will be as reusable as possible
¢ To make sure performance does not suffer when code is reused

2. Key Facts

SOHOTELS is being implemented in three builds so that it can be used to generate data for
the early phases of the AGSS (which is a Cleanroom project). Build development and
independent acceptance testing are being conducted in parallel. At present, the test team has
finished testing SOHOTELS Build 1. The development team expects to complete Build 2 and
deliver it to the independent test team by the end of the week.

SOHOTELS consists of six subsystems. As of June, the estimated total number of
components was 435, of which 396 (91 percent) have currently been completed. Total SLOC
for SOHOTELS was estimated at 67.6K SLOC, with 46.6K SLOC of code to be reused
verbatim and 15.7K SLOC to be reused with modifications. As of September 13, 1993, there
were 65.4K SLOC in the SOHOTELS system, or 97 percent of the estimated total.

The SOHOTELS task leader is currently re-estimating the size of the system because
SOHOTELS will be more complex than was originally predicted. The new estimates will also
include SLOC for the schema files that are being developed.

The phase start dates for SOHOTELS are

September 9, 1992 Requirements Definition
October 3, '~ 32 Design
(%73 %,,_ SR 127 SEL-94-002

JRECEDING. SMAR ™ ater mwr s

May 1, 1993 Code and Unit Test
June 26, 1993 Acceptance Test
May 7, 1993 Cleanup
3. Goals of the Study
The study goals for SOHOTELS are

e To validate the SEL’s recommended tailoring of the development life cycle for high-
reuse Ada projects

e To refine SEL models for high-reuse software development projects in Ada,
specifically

- Effort (per DLOC, by phase and by activity)

- Schedule (duration for telemetry simulators and by phase)
- Errors (number per KSLOC/DLOC)

- Classes of errors (e.g., initialization errors, data errors)

- Growth in schedule estimates and size estimates (from initial estimates to
completion and from PDR/CDR to completion)

4. Approach
The following steps will be taken to accomplish the study goals:

e Understand which of the standard development processes are being followed (per
Reference 10) and which have been tailored for the SOHOTELS project. Ensure that
information is entered into the SEL database that will allow SOHOTELS data to be
correctly interpreted in light of this tailoring.

e Analyze project/build characteristics, effort and schedule estimates, effort and schedule
actuals, and error data on a monthly basis while development is ongoing.

e At project completion, plot the effort, schedule, error rate, and estimatc data.
Compare these plots with current SEL models and with plots from other high-reuse
projects in Ada. Compare and tontrast the error-class data with data from FORTRAN
projects, from Ada projects with low reuse, and from other high-reuse Ada projects.

5. Data Collection

To address these study goals, the following standard set of SEL data for Ada projects will be
collected:

e Size, effort, and schedule estimates (Project Estimates Forms)
e Weekly development effort (Personnel Resources Forms)
e Growth data (Component Origination Forms and SEL librarians)

e Change and error data (Change Report Forms and SEL librarians)

SEL-94-002 128

Appendix C. List of Rules

Rule Page
Understand that software measurement is a means to an end, not an end in itself.c.....coeene. 2
Focus on applying results rather than collecting data.ccccoceriiniiiciinnnnnincneeceieena 13
Understand the g0als...........cocouiiiiiiiniiiiin ittt cvn et st b et ssne s e ae e enesaseseseasees 22
Understand how to apply MEasUrEMENL.cocceeeiiiriiriminieeenreerinsteaststre e s seeesssesaresteesanes 22
St EXPECLALONS. ...veiuuiiiriteiietiriteitte et ree e ten st sste e re b e smee st e e sas e besenteeneeasaasesestaess et enanasssonastss 23
Plan to achieve an €arly SUCCESS.ccoueeimiiiiiiiiinecicetceiect ettt ss e st e e s s enes 23
FOCUS J0CANLYttt ettt e e sase e seaaa et e s e n et e e nneen e aesens 24
Start SMAlL.....o.ooeii ettt ettt e n et 24
Organize the analysts separately from the developers............cocoeeiieieirnirrorieneceieee e 26
Make sure the measures apply t0 the g0als.cccvievrrieiniiiiinitccce e 28
Keep the number of measumies t0 @ MINIMUIM.oooveeriiiiieniiiiieinreeeeteeseieeerreressreeesssaeeesssssanenns 29
Avoid over-reporting measurement data............cccceieurennieiniinennicrimntecrnreee et seeeesenen 29
Budget for the cost of the measurement Program.c.coocceceeirrirrrecercnineestiree e reeeeesaesnes 30
Plan to spend at least three times as much on data analysis and use as on data collection. 33
Collect effort data at least MONthly...........ccoieiiieiiiii et 37
Clarify the scope of effort data COUECHON.c..coviiiiiirnerteetcece e 37
Collect error data only for controlled SOftWare.ccceeeierierniicrnrirrenrees s eee e 39
Do not expect to measure error correction effort precisely.coovevievvinniiiinneiiceninnncccneccnne 40
Do not expect to find generalized, well-defined process measures.cc.coceeeerccriniinceniennnennen 41
Do not expect to find a database of process MEASUrEMENLS.c.cccevvverrieincruieninicnineeseenenecnens 42
Understand the high-levei process characteristics.cccvieviiiirnrncrneciicnniin s 42
Use simple definitions of life-cycle phases.coccoeiieiiiirnniicecierr s 45
Use lines of code 10 TEPIESENt SIZE.........cccciveeeririiriiiiieniiceiererte st s eete et et e e s anesreensesas 45
Specify which software is to be counted.coocevrreereriiineninre ettt 48
Do not expect to automate data COECHON.c..ocveiiiiiiiiriireceeecectee e er e e s sre e e enee 54
Make providing data €asy.cccoveerciieiiviecrees crerieererete s et snr e e v are s r e saaeesnee s nee s 55
Use commercially available toolS.cccoiiieviiiiiricrrieeeee e s e ve e e tneesreseeneeen 56
Expect measurement data to be flawed, inexact, and inCOnSistent.covuvvveeervecricennerieecenne 57

129 SEL-94-002

Abbreviations and Acronyms

AGSS attitude ground support system

CASE computer-aided software engineering

CDR critical design review

CM configuration management

CMM Capability Maturity Model

Code Q Office of Safety and Mission Assurance (NASA)

COTS commercial off-the-shelf

CPU central processing unit

DBMS database management system

DLOC developed lines of code

GSFC Goddard Space Flight Center

IV&V independent verification and validation

JSC Johnson Space Center

KDLOC 1,000 developed lines of code

KSLOC 1,000 source lines of code

NASA National Aeronautics and Space Administratiorn

PDR preliminary design review

QA quality assurance

R&D resc.ch and development

SAMPEXTS Solar, Anomalous, and Magaetospheric Particle Explorer Telemetry
Simulator

A § Software Engineering Institute

SEL Software Engineering Laboratory

SLOC source lines of code

SME Software Management Environment

SOHOTELS Solar and Heliospheric Observatory Telemetry Simulator

;PACE —@__ INTENTIONALLY BLANK

131 SEL-94-002
PHECROING. PROK BLANK BOT FLaeD

e eve e U MR AL

References

. Grady, R. B., and Caswell, D. L., Software Metrics: Establishing a Company-Wide Program.
Prentice-Hall Inc., Englewood Cliffs, NJ, 1989.

. NASA, DA3 Software Development Metrics Handbook, Version 2.1, JSC-25519, Office of
the Assistant Director for Program Support, Mission Operations Directorate, Johnson Space
Center, Houston, April 1992.

, DA3 Software Sustaining Engineering Metrics Handbook, Version 2.0, JSC-26010,
Office of the Assistant Director for Program Support, Mission Operations Directorate,
Johnson Space Center, Houston, December 1992.

, DA3 Development Project Metrics Handbook, Version 5.0, JSC-36112, Office of the
Assistant Director for Program Support, Mission Operations Directorate, Johnson Space
Center, Houston, March 1993.

. Musa, J. D,, Iannino, A., and Okumuto, K, Software Reliability: Measurement, Prediction,
Application, McGraw-Hill, New York, 1987.

. Rifkin, S., and Cox, C., Measurement in Practice, CMU/SEI-91-TR-16, Software Engineering
Institute, Carnegie Mellon University, August 1991.

. Daskalantonakis, M. K., “A Practical View of Software Measurement and Implementation
Experiences With Motorola,” IEEE Transactions on Software Engineering, Volume SE-18,
November 1992.

. Decker, W., Hendrick, R., and Valett, ., Software Engineering Laboratory Relationships,
Models, and Management Rules, SEL-91-001, Software Engineering Laboratory,
NASA/GSFC, February 1991.

. Condon, S., Regardie, M., Stark, M., and Waligora, S., Cost and Schedule Estimation Study
Report, SEL-93-002, Software “ngineering Laboratory, NASA/GSFC, November 1993.

10. Landis, L., McGarry, F., Waligora, S., et al., Manager’s Handbook for Software Development

(Revision 1), SEL.-84-101, Software Engineering Laboratory, NASA/GSFC, November 1990.

11. Paulk, M. C., Curtis, B., Chrissis, M. B., and Weber, C. V., Capability M-.urity Model for

Software, Version 1.1, CMU/SEI-93-TR-24, Software Engineering Institute, Carnegie Mellon
University, February 1993.

12. McGarry, F., and Jeletic, K., “Process Improvement as an Investment: Measuring Its Worth,”

Proceedings of the Eighteenth Annual Scftware Engineering Workshop, SEL 93-003,
NASA/GSFC, December 1993.

13. Currit, P. A., Dyer, M., and Mills, H. D., “Certifying the Reliability of Software,” IEEE

Transactions on Software Engineering, Vol. SE-12, No. 1, January 1286, pp. 3—-11.

MUF L INTENT G _ 133 SEL-94-002

----- ey AL ..,.s
PRECHDINA-BAOK BLANK WL Fhaskl

crevw swwry u FE was

14.

15.

16.

17.

18.

19.

20.

Basili, V. R., and Green, S., “The Evolution of Software Processes Based Upon Measurement
in the SEL: The Cleanroom Example,” IEEE Software, To be published in 1994.

Rombach, H. D., Ulery, B. T., and Valett, J. D., “Toward Full Life Cycle Control: Adding
Maintenance Mcasurement to the SEL,” Journal of Systems and Software. Vol. 18. 1992,

pp- 125-138.

Caldiera, G., McGarry, F., Waligora, S., Jeletic, K., and Basili, V. R., Software Process
Insprovement Guidebook, NASA-GB-002-94, Software Engineering Program, 1994.

International Function Point Users Group. Function Point Counting Practices Manual, Release
3.2, Westerville, Ohio, 1991.

McGarry, F.. “Experimental Software Engincering: Seventeen Years of Lessons in the SEL,”
Proceedings of the Seventeenth Annual Software Engineering Workshop, SEL-92-004,
NASA/G™ 7C, December 1992.

Heller, G., Valett, J., and Wild, M., Data Collection Procedures for the Software Engineering
Laboratory Database, SEL-92-002, Software Engineering Laboratory, NASA/GSFC, March
1992.

Decker, W. and Valett, J., Software Management Environment (SME) Concepts and
Architecture, SEL-89-003, Software Engineering Laboratory, NASA/GSFC, August 1989.

- Hall, D., Sinclair, C., and McGarry, F., Profile of Software at the Goddard Space Flight

Center, NASA-RPT-002-94, Software Engineering Program, April 1994.

.Basili, V. R., and Perricone, B. T., “Software Errors and Complexity: An Empirical

Investigation,” Communications of the ACM, Vol. 27, No. 1, January 1984, pp. 42-52.

SEL-94-602 134

Standard Bibliography of SEL Literature

The technical papers, memorandums, and documents listed in this bibliography are organized into
tv.o groups. The first group is composed of documents issued by the Software Engineering
Laboratory (SEL) during its research and development activities. The second group includes
materials that were published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer Software Engincering Workshop,
September 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop, September
1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study, P. A. Scheffer
and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp,
December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User’s Guide (Revision
3), W.J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations, K. Freburger and
V. R. Basili, May 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language (PDL) in
the Goddard Space Flight Center (GSFC) Code 580 Software Design Environment, C. E.
Goorevich, 4.. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop, November
1979

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R) Syst-m
Svaluation, W. 1. Decker and C. E. Goorevich, May 1980

SEL-80-005, A Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshcp, November
1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation Models for Software Systems,
J.F. Cook and F. E. McGarry, December 1980

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering, V. R.
Basili, 1980

135 SEL-94-002

SEL-81-011, Evaluating Software Development by Analysis of Change Data, D. M. Weiss,
November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of Medium
Scale Software Systems, G. O. Picasso, December 1981

SEL-81-013, Proceedings of the Sixth Annual Software Engineering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engineering
Laboratory (SEL), A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry, et al., August
1982

SEL-81-104, The Software Engineering Laboratory, D. N. Card, F. E. McGarry, G. Page, et al.,
February 1982

SEL-81-110, Evaluation of an Independent Verification and Validation (IV&V) Methodology for
Flight Dynamics, G. Page, F. E. McGarry, and D. N. Card, June 1985

SEL-81-305, Recommended Approach to Software Development, L. Landis, S. Waligora, F. E.
McGarry, et al., June 1992

SEL-81-305SP1. Ada Developers’ Supplement to the Recommended Approach, R. Kester and L.
Landis, November 1993

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page, D. N.
Card, and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop, December
1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From the
Software Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description
(Revision 1), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst, M. G. Rohleder,
and F. E. McGarry, October 1983

SEL-82-1206, Annotated Bibliography of Software Engineering Laboratory Literature, L.
Morusiewicz and J. Valett, November 1993

SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page, D. N. Card, et
al., February 1984

SEL-83-002, Measures and Metrics for Software Development, D. N. Card, F. E. McGarry, G.
Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume i, November 1983

SEL-94-002 136

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop, November
1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revision 1), C. W.
Doerflinger, November 1989

SEL-84-003, Investigation of Specification Measures for the Software Engineering Laboratory
(SEL), W. W. Agresti, V. E. Churc... and F. E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineening Workshop, November 1984

SEL-84-101, Manager's Handbook for Software Development (Revision 1), L. Landis, F. E.
McGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D. N. Card, R. W. Selby, Jr.,
F. E. McGarry, et al., April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray Observatory
Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and Metrics, R.
W. Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, F. McGarry, and C.
Antle, C:cember 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop, December 1985

SEL-86-001, Programmer’s Handbook for Flight Dynamics Software Development, R. Wood and
E. Edwards, March 1986

SEL-30-002, General Object-Oriented Software Development, E. Seidewitz and M. Stark,
August 1986

SEL.-86-003, Flight Dynamics System Software Development Environment (FDS/SDE) Tutonal,
J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume IV, November 1986
SEL-86-005. Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop, December
1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software
Development, S. Perry et al., March 1987

SEL-87-002, Ada® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM), W. W. Agresti,
June 1987

137 SEL-94-002

SEL-87-004, Assessing the Ada® Design Process and Its Implications: A Case Study, S.
Godfrey, C. Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop, December
1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle, L.
Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase Analysis.
K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop, November
1988

SEL-88-005, Proceedings of the First NASA Ada User’s Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study, S. Godfrey and
C. Brophy, September 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation/Testing
Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry, November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/Goddard, C.
Brophy, November 1989

SEL.-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop, November
1989

SEL-89-008, Proceedings of the Second NASA Ada Users’ Symposium, November 1989

SEL-89-103, Software Management Environment (SME) Concepts and Architecture (Revision
). R. Hendrick, D. Kistler, and J. Valett, September 1992

SEL-89-301, Software Engineering Laborary (SEL) Database Organization and User’s Guide
(Revision 3), L. Morusiewicz, December 1993

SEL-90-001, Database Access Manager for the Software Engineering Laboratory (DAMSEL)
User’s Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project
Description and Early Analysis, S. Green et al., March 1990

SEL-90-003, A Study of the Portability of an Ada System in the Software Engineering
Laboratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experiment
Summary, T. McDermott and M. Stark, September 1990

SEL-94-002 138

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop, November
1990

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Management
Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report, E. W.
Booth and M. E. Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model, S. Green,
November 1991

SEL-91-005, Collected Software Engineering Papers: Volume IX, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop, December
1991

SEL-91-102, Software Enginecring Laboratory (SEL) Data and Information Policy (Revision 1),
F. McGarry, August 1991

SEL-92-001, Software Management Environment (SME) Installation Guide, D. Kistler and K.
Jeletic, January 1992

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL)
Database, G. Heller, J. Valett, and M. Wild, March 1992

SEL-92-003, Collected Software Engineering Papers: Volume X, November 1992

SEL-92-004, Proceedings of the Seventeenth Annual Software Engineering Workshop, December
1992

SEL-93-001, Collected Software Engineering Papers: Volume XI, November 1993

SEL-93-002. Cost and Schedule Estimation Study Report, S. Condon, M. Regardie. M. Stark, et
al., November 1993

SEL-93-003, Proceedings of the Eighteenth Annual Software Engineering Workshop, December
1993

SEL-94-001, Software Management Environment (SME) Components and Algorithms, R.
Hendrick, D. Kistler, and J. Valett, February 1994

SEL-94-002, Software Measurement Guidebook, M. Bassman, F. McGarry, R. Pajerski, July
1994

SEL-RELATED LITERATURE

10Abd-El-Hafiz, S. K., V. R. Basili, and G. Caldiera, “Towards Automated Support for
Extraction of Reusable Components,” Proceedings of the IEEE Conference on Software
Maintenance-1991 (CSM 91), October 1991

139 SEL-94-002

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, “Designing With Ada for Satellite
Simulation: A Case Study,” Proceedings of the First International Symposium on Ada for the
NASA Space Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., “Measuring Software Technology,” Program
Transformation and Programming Environments. New York: Springer-Verlag, 1984

IBailey, J. W., and V. R. Basili, “A Meta-Model for Software Development Resource
Expenditures,” Proceedings of the Fifth International Conference on Software Engineering. New
York: IEEE Cormaputer Society Press, 1981

8Bailey, J. W., and V. R. Basili, “Software Reclamation: Improving Post-Development
Reusability,” Proceedings of the Eighth Annual National Coaference on Ada Technology, March
1990

10Bailey, J. W., and V. R. Basili, “The Software-Cycle Model for Re-Engineering and Reuse,”
Proceedings of the ACM Tri-Ada 91 Conference, October 1991

1Basili, V. R., “Models and Metrics for Software Management and Engineering,” ASME
Advances in Computer Technology, January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering. New
York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., “Quantitative Evaluation of Software Methodology,” Proceedings of the First Pan-
Pacific Computer Conference, September 1985

TBasili, V. R., Maintenance = Reuse-Oriented Software Development, University of Maryland,
Technical Report TR-2244, May 1989

Basili, V. R., Software Development: A Paradigm for the Futare, University of Maryland,
Technical Report TR-2263, June 1989

8Basili, V. R., “Viewing Maintenance of Reuse-Oriented Software Development,” IEEE
Software, January 1990

Basili, V. R., and J. Beane. “Can the Parr Curve Help With Manpower Distribution and
Resource Estimation Problems?,” Journal of Systems and Software, February 1981, vol. 2, no. 1

9Basili, V. R., G. Caldiera, and G. Cantone, “A Referencc Architecture for the Component
Factory,” ACM Transactions on Software Engineering and Methodology, January 1992

10Basili, V., G. Caldiera, F. McGarry, et al., “The Software Engincering Laboratory—An
Operational Software Experience Factory,” Proceedings of the Fourteenth International
Conference on Software Engineering (ICSE 92), May 1992

IBasili, V. R., and K. Freburger, “Programming Measurement and Estimaticn in the Software
Engineering Laboratory,” Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, “Finding Relationships Between Effort and Other
Variables in the SEL,” Proceedings of the International Computer Software and Applications
Conference, October 1985

SEL-94-002 140

4Basili, V. R., and D. Patnaik, A Study on Fault Prudiction and Reliability Assessment in the SEL
Environment, University of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, “Software Errors and Complexity: An Empirical
Investigation,” Communications of the ACM, January 1984, vol. 27, no. 1

1Basili, V. R., and T. Phillips, “Evaluating and Comparing Software Metrics in the Software
Engineering Laboratory,” Proceedings of the ACM SIGMETRICS Symposium/Workshop:
Quality Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, “ARROWSMITH-P—A Prototype Expert System for Software
Engineering Management,” Proceedings of the IEEE/MITRE Expert Systems in Government
Symposium, October 1985

Basili, V. R,, and J. Ramsey, Structural Coverage of Functional ‘y'esting, University of Maryland,
Technical Report TR-1442, September 1984

Basili, V. R.. and R. Reiter, “Evaluating Automatable Measures for Software Development,”
Proceedings of the Workshop on Quantitative Software Models for Reliability, Complexity, and
Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. R., and H. D. Rombach, “Tailoring the Software Process to Project Goals and
Environments,” Proceedings of the 9th International Conference on Software Engineering, March
1987

5Basili, V. R., and H. D. Rombach, “TAME: Tailoring an Ada Measurement Environment,”
Proceedings of the Joint Ada Conference, March 1987

5Basili, V. R., and H. D. Rombach, “TAME: Integrating Measurement Into Software
Environments,” University of Maryland, Technical Report TR-1764, June 1987

6Basili, V. R.. and H. D. Rombach, “The TAME Project: Towards Improvement-Oriented
Software Environments,” IEEE Transactions on Software Engineering, June 1988

TBasili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: A Reuse-
Enabling Software Evolution Environment, University of Maryland, Technical Report TR-2158,
December 1988

8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: Model-
Based Reuse Characterization Schemes, University of Maryland, Technical Report TR-2446,
April 1990

9Basili, V. R., and H. D. Rombach, “Support for Comprehensive Reuse,” Software Engineering
Journal, September 1991

3Basili, V. R., and R. W. Selby, Jr., “Calculation and Use of an Environment’s Characteristic
Software Metric Set,” Proceedings of the Eighth Internatioral Conference on Software
Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W. Selby, “Comparing the Effectiveness of Software Testing Strategies,”
IEEE Transactions on Software Engineering, December 1987

141 SEL-94-002

3Basili, V. R., and R. W. Selby, Jr., “Four Applications of a Software Data Collection and
Analysis Methodology,” Proceedings of the NATO Advanced Study Institute, August 1985

3Basili, V. R., and R. Selby, “Comparing the Effectiveness of Software Testing Strategies,” IEEE
Transactions on Software Engineering, December 1987

9Basili, V. R., and R. W. Selby, “Paradigms for Experimentation and Empirical Studies in
Software Engineering,” Reliability Engineering and System Safety, January 1991

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, “Experimentation in Software Engineering,”
IEEE Transactions on Software Engineering, July 1986

2Basili, V. R., R. W. Selby, and T. Phillips, “Metric Analysis and Data Validation Across
FORTRAN Projects,” IEEE Transactions on Software Engineering, November 1983

2Basili, V. R., and D. M. Weiss, A Methodology for Collecting Valid Software Engineering Data,
University of Maryland, Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, “A Methodology for Collecting Valid Software Engineering
Data,” IEEE Transactions on Software Engineering, November 1984

Basili, V. R., and M. V. Zelkowitz, “The Software Engineering Laboratory: Objectives,”
Proceedings of the Fifteenth Annual Conference on Computer Personnel Research, August 1977

Basili, V. R, and M. V. Zelkowitz, “Designing a Software Measurement Experiment,”
Proceedings of the Software Life Cycle Management Workshop, September 1977

1Basili, V. R., and M. V. Zelkowitz, “Operation of the Software Engineering Laboratory,”
Proceedings of the Second Software Life Cycle Management Workshop, August 1978

IBasili, V. R., and M. V. Zelkowitz, “Measuring Sofiware Development Characteristics in the
Local Environment,” Computers and Structures, August 1978, vol. 10

Basili, V. R, and M. V. Zelkowitz, “Analyzing Medium Scale Software Development,”
Proceedings of the Third Intcrnational Conference on Software Engineering. New York: IEEE
Computer Society Press, 1978

Bassman, M. J., F. McGarry, and R. Pajerski, Software Measurement Guidebook, NASA-GB-
001-94, Software Engineering Program, Julv 1994

9Booth, E. W., and M. E. Stark, “Designing Configurable Software: COMPASS Implementation
Concepts,” Proceedings of Tri-Ada 1991, October 1991

10Booth, E. W., and M. E. Stark, “Software Engineering Laboratory Ada Performance
Study—Results and Implications,” Proceedings of the Fourth Annual NASA Ada User’s
Symposium, April 1992

10Briand, L. C., and V. R. Basili, “A Classification Procedure for the Effective Management of
Changes During the Maintenance Process,” Proceedings of the 1992 IEEE Conference on
Software Maintenance (CSM 92), November 1992

SEL-94-002 142

10Briand, L. C., V. R. Basili, and C. }. Hetmanski, “Providing an Empirical Basis for Optimizing
the Verification and Testing Phases of Software Development,” Proceedings of the Third IEEE
International Symposium on Software Reliability Engineering (ISSRL 92), October 1992

UBriand, L. C., V. R. Basili, and C. J. Hetmanski, Developing Interpretable Models with
Optimized Set Reduction for Identifying High Risk Software Components, TR-3048, University
of Maryland, Technical Report, March 1993

9Briand, L. C., V. R. Basili, and W. M. Thomas, A Pattern Recognition Approach for Software
Engineering Data Analysis, University of Maryland, Technical Report TR-2672. May 1991

1Briand, L. C., S. Morasca, and V. R. Basili, “Measuring and Assessing Maintainability at the
End of High Level Design,” Proceedings of the 1993 IEEE Conference on Software Maintenance
(CSM 93), November 1993

HBriand, L. C., W. M. Thomas, and C. J. Hetmanski, “Modeling and Managing Risk Early in
Software Development,” Proceedings of the Fifteenth International Conference on Software
Engineering (ICSE 93), May 1993

5Brophy, C. E., W. W. Agresti, and V. R. Basili, “Lessons Lrarned in Use of Ada-Oriented
Design Methods,” Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, “Lessons Learned in the
Implementation Phase of a Luge Ada Project,” Proceedings of the Washington Ada Technical
Conference, March 1988

2Card, D. N., “Early Estimation of Resource Expenditures and Program Size,” Compute:
Sciences Corporation, Technical Memorandum, June 1982

2Card, D. N., “Comparison of Regression Modeling Techniques for Resource Estimation,”
Computer Sciences Corporation, Technical Memorandum, November 1982

3Card, D. N., “A Software Technology Evaluation Program,” Annais do XVIII Congresso
Nacional de Informatica, October 1985

5Card, D. N., and W. W. Agresti, “Resolving the Software Science Anomaly,” Journal of Systems
and Software, 1987

6Card, D. N., and W. W. Agresti, “Measuring Software Design Complexity,” Journal of Systems
and Software, June 1988

4Card, D. N, V. E. Church, and W. W. Agresti, “An Empirical Study of Software Design
Practices,” IEEE Transactions on Software Engineering, February 1986

Card, D. N, V. E. Church, W. W. Agresti, and Q. L. Jordan, “A Software Engineering View of
Flight Dynamics Analysis System,” Parts I and II, Computer Sciences Corporation, Technical
Memorandum, February 1984

Card, D. N, Q. L. Jordan, and V. E. Church, “Characteristics of FORTRAN Modules,”
Computer Sciences Corporation, Technical Memorandum, June 1984

5Card, D. N., F. E. McGarry, and G. T. Page, “Evaluating Software Engineering Technologies,”
IEEE Transactions on Software Engineering, July 1987

143 SEL-94-002

3Card, D. N., G. T. Page, and F. E. McGarry, “Criteria for Software Modularization,”
Proceedings of the Eighth International Conference on Software Engineering. New York: IEEE
Computer Society Press, 1985

IChen, E., and M. V. Zelkowitz, “Use of Cluster Analysis To Evaluate Software Engineering
Methodologies,” Proceedings of the Fifth International Conference on Software Engineering.
New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan, “An Approach for Assessing
Software Prototypes,” ACM Software Engineering Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, “Monitoring Software Development Through Dynamic
Variables,” Proceedings of the Seventh International Computer Software and Applications
Conference. New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of Maryland,
Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

6Godfrey, S., and C. Brophy, “Experiences ‘n the Implementation of a Large Ada Project,”
Proceedings of the 1988 Washington Ada Symposium, June 1988

SJeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical Association of
Software Data, University of Maryland, Technical Report TR- 1848, May 1987

6Jeﬂ‘ery, D. R,, and V. R. Basili, “Validating the TAME Resource Data Model,” Proceedings of
the Tenth International Conference on Software Engineering, April 1988

HLi, N. R, and M. V. Zelkow.tz, “An Information Model for Use in Software Management
Estimation and Pred.ction,” Proceedings of the Second International Conference on Information
Knowledge Management, November 1993

SMark, L., and H. D. Rombach, A Meta Information Base for Software Engineering, University
of Maryland, Technical Report TR-1765, July 1987

6Mark, L., and H. D. Rombach, “Generating Cusiomized Software Engineering Information
Bases From Software Process and Product Specifications,” Proceedings of the 22nd Annual
Hawaii International Conference on Systen Sciences, January 1989

SMcGarry, F. E., and W. W. Agresti, “Measuring Ada for Software Development in the Software
Engineering Laboratory (SEL),” Proceedings of the 21st Annual Hawaii International Conference
on System Sciences, January 1988

"McGarry, F., L. Esker, and K. Quimby, “Evolution of Ada Technology in a Production Software
Environment,” Proceedings of the Sixth Washington Ada Symposium (WADAS), June 1989

3McGarry, F. E., J. Valett, and D. Hall, “Measuring the Impact of Computer Resource Quality on
the Software Development Process and Product,” Proceedings of the Hawaiian International
Conference on System Sciences, January 1985

3Page, G., F. E. McGarry, and D. N. Card, “A Practical Experience With Independent
Verification and Validation,” Proceedings of the Eighth International Computer Software and
Applications Conference, November 1984

SEL-94-002 144

5Ramsey, C. L., and V. R. Basili, “An Evaluation of Expert Sys..ms for Software Engineering
Management,” IEEE Transactions on Software Engineering, June 1989

3Ramsey, J., and V. R. Basili, “Analyzing the Test Process Using Structural Coverage,”
Proceedings of the Eighth International Confererce on Software Engineering. New York: IEEE
Computer Society Press, 1985

SRombach, H. D., “A Controlled Experiment on the Impact of Software Structure on
Maintainability,” IEEE Transactions on Sofiware Engineering, March 1987

8Rombach, H. D., “Design Measurement: Some Lessons Learned,” IEEE Software, March 1990

9Rombach, H. D., “Software Reuse: A Key to the Maintenance Problem,” Butterworth Journal
of Information and Software Technology, January/February 1991

6Rombach, H. D., and V. R. Basili, “Quantitative Assessment of Maintcnance: An Industrial
Case Study,” Proceedings From the Conference on Software Maintenance, September 1987

6Rombach, H. D., and L. Mark, “Sofiware Process and Product Specifications: A Basis for
Generating Customized SE Information Bases,” Proceedings of the 22nd Annual Hawaii
International Conference on System Sciences, January 1989

TRombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance Improvement
Program: Lessons Learned in the SEL, University of Maryland, Technical Report TR-2252, May
1989

10Rombach, H. D, B. T. Ulery, and J. D. Valett, “Toward Full Life Cycle Control: Adding
Maintenance Measurement to the SEL,” Journal of Systems ard Software, May 1992

6Seidewitz, E., “Object-Oriented Programming in Smalltalk and Ada,” Proceedings of the 1987
Conference on Object-Oriented Programming Systems, Languages, and Applications, October
1987

5Seidewitz. E., “General Object-Oriented Software Development: Background and Experience,”
Proceedings of the 21st Hawaii Internation. onference on System Sciences, January 1988

6Seidewitz, E., “General Object-Oriented Software Development with Ada: A Life Cycle
Approach,” Proceedings of the CASE Technology Conference, April 1988

9Seidewitz, E., “Object-Oriented Programming Through Type Extension in Ada 9X,” Ada
Letters, March/April 1991

10Seidewitz, E., “Object-Oriented Programming With Mixins in Ada,” Ada Letters, March/April
1992

4Seidewitz, E., and M. Stark, “Towards a General Object-Oriented Software Development
Methodology,” Proceedings of the First International Symposium on Ada for the NASA Space
Station, June 1986

9Seidewitz, E., and M. Stark, “An Object-Oriented Approach to Parameterized Software in Ada,”
Proceedings of the Eighth Washington Ada Symposium, June 1991

145 SEL-94-002

8Stark, M., “On Designing Parametrized Systems Using Ada,” Proccedings of the Seventh
Washington Ada Symposium, June 1990

lStark, M., “Impacts of Object-Oriented Technologies: Seven Years of SEL Studies,”
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications, September 1993

TStark, M. E. and E. W. Booth, “Using Ada to Maximize Verbatim Software Reuse,”
Proceedings of TRI-Ada 1989, October 1989

5Stark, M., and E. Seidewitz, “Towards a General Object-Oriented Ada Lifecycle,” Proceedings
of the Joint Ada Conference, March 1937

10Stragh, P. A., and M. V. Zelkowitz, “On the Nature of Bias and Defects in the Software
Specification Process,” Proceedings of the Sixteenth International Computer Software and
Applications Corference (COMPSAC 92), September 1992

8Straub, P. A., and M. V. Zelkowitz, “PUC: A Functional Specification Language for Ada,”
Proceedings of the Tenth International Conference of the Chilean Computer Science Society, July
1950

7Sunazuka, T., and V. R. Bas.li, Integrating Automated Support for a Software Management
Cycle Into the TAME System, Uiaversity of Maryland, Technical Report TR-2289, July 1989

10Tian, J., A. Porter, and M. V. Zelkowitz, “An Improved Classification Tree Analysis of High
Cost Modules Based Upon an Axiomatic Definition of Complexity,” Proceedings of the Third
IEEE International Symposium on Software Reliability Engineering (ISSRE 92), October 1992

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Development Data,
Data and Analysis Center for Software, Special Publication, May 1981

10valett, J. D., “Automated Support for Experience-Based Software Management,” Proceedings
of the Second Irvine Software Symposium (ISS _92), March 1992

5Valett, J. D., and F. E. McGarry, “A Summary of Sofiware Measurement Experiences in the
Software Engineering Laboratory,” Proceedings of the 2Ist Annual Hawaii International
Conference on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, “Evaluating Software Development by Analysis of Changes:
Some Data From the Software Engineering Laboratory,” IEEE Transactions on Software
Engineering, February 1985

5Wu, L., V. R. Basili, and K. Reed, “A Structure Coverage Tool for Ada Softwaie Systems,”
Proceedings of the Joint Ada Conference, March 1987

1Zelkowitz, M. V., “Resource Estimation for Medium-Scale Software Projects,” Proceedings of
the Twelfth Conference on the Interface of Statistics and Computer Science. New York: IEEE
Computer Society Press, 1979

2Zelkowitz, M. V., “Data Collection and Evaluation for Experimental Computur Science
Research,” Empirical Foundations for Computer and Information Science (Proceedings),
November 1982

SEL-94-002 146

6Zelkowitz, M. V., “The Effectiveness of Software Prototyping: A Case Study,” Proceedings of
the 26th Annual Technical Symposium of the Washington, D.C., Chapter of the ACM, June 1987

6Zelkowitz, M. V., “Resource Utilization During Software Development,” Journal of Systems
and Software, 1988

8Zelkowitz, M. V., “Evolution Towards Specifications Environment: Experiences With Syntax
Editors,” Information and Software Technology, April 1990

147 SEL-94-002

NOTES

IThis article also appears in SEL-82-004, Collected Software Engineering Papers: Volume I,
July 1982.

2This article also appears in SEL-83-003, Collected Software Engineering Papers: Volume II,
November 1983.

3This article also appears in SEL-85-003, Collected Software Engineering Papers: Volume III,
November 1985.

4This article also appears in SEL-86-004, Collected Software Engineering Papers: Volume IV,
November 1986.

5This article also ov1; -ars in SEL-87-009, Collected Software Engineering Papers: Volume V,
November 1987.

6This article also appears in SEL-88-002, Colle..2d Software Engineering Papers: Volume VI,
November 1983.

This article also appears in SEL-89-006, Collected Software Engineering Papers: Volume VII,
November 1989.

8This article also appears in SEL-90-005, Collected Software Engineering Papers: Volume VIll,
November 1990.

9This article also appears in SEL-91-005, Collected Software Engineering Papers: Volume IX,
November 1991.

10This article also appears in SEL-92-003, Collected Software Engineering Papers: Volume X,
November 1992.

1 This anticle also appears in SEL-$3-001. Collecied Software Engineering Papers: Volume XI,
November 1993.

SEL-94 002 148

REPORT DOCUMENTATION PAGE Fom Aoproved

Pubbic reporbng burden for thes of int s o 9@ 1 hour per response, INCluding the tme for Q nstruct g exrstng data Sources, gathenng
and mantaning the data neaded. and completg and g the coll ot Send wmwmammwdmmu
nformation, 0 SUQGH for red \h-sburdan towmnmummr angd Reports, 1215 Jeflerson Dawis Highwey, Sutte
1204, Ariygton. uzzzoemwnmmawm«u_wnmgommz Wash_nzm.oc 20503.
1. AGENCY USE ONLY (Leave blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 1994 Contractor Report
4. TITLE AND SUBT'TLE S. FUNDING NUMBERS
Software Measurement Guidebook
552
6 AUTHOR(S) spp T
Software Engineering Laboratory S e _:9
|- /
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ammrm
Software Engineering Branch REPOHT NUMBER
Code 552
Goddard Space Flight Center SEL-94-002
Greenbelt, Maryland
9. SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. *ONSORMNGAMIONITORING
_ ‘ AGENCY REPORT NUMBER
NASA Acronautics and Space Administration
Washington, D.C. 20546-000; CR-189407
11. SUPPLEMENTARY NOTES
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category: 61

Report is available from the NASA Center for AeroSpace Information,

800 Elkridge Landing Road, Linthicum Heights, MD 21090; (301) 621-0390.

13. ABSTRACT (Maximum 200 word's)

This software Measurement Guidebook presents information on the purpose and importance of measurement. It
discusses the specific procedures and activities of a measurement program and the roles of the people involved. The guide-
book also clarifies the roles that measurement can and must play in the goal of contiual, sustained improvement for all
software production and maintenance efforts.

14. SUBJECY TERMS 5. NUMBER OF PAGES
Software Measuremeni 148
16. PRICE CODE
17 SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 18. SECURITY CLASSIRCATION 20. LIMSTATION OF ASSTRACT
OF REPORT GF Th!S FAGE QF ABSTRACT
Unclassified Unclassified Unclassified Unlimited
NSN 7540-01-280-550 Smdsrd Form 298 (Rev. 2-89)

saAne mes e oA Ann sa s

v
—re e PN SN § epetilon

